Presented at SPIE Visual Communications and Image Pratg&l: Image Processing
Conference 1606, pp. 320-334, Nov. 11-13, 1991, Boston MA.

CONNECTIVITY-PRESERVING MORPHOLOGICAL IMAGE
TRANSFORMATIONS

Dan S. Bloomberg

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304

Abstract

Methods for thinning connected components of an imagerdifféhe size of support, type of con-
nectivity preserved, degrees of parallelism and pipediniand smoothness and fidelity to structure of
the results. A unifying framework is presented, using imagephology, of all 4- and 8-connectivity-
preserving (CP) transformations that use a 3x3 basis ofstipp binary images discretized on a square
lattice. Two types of atomic CP transformations are defimeghkCP neither breaks nor joins components
andstrongCP additionally preserves the number of connected compenéns shown that out of thou-
sands of possible 3x3 hit-miss structuring elements (S&s$heir most general form there are only four
SEs (and their rotational isomorphs), for each of the twe g&tand 8-connectivity), that satisfy strong
CP for atomic operations. Simple symmetry properties dsastveen elements of each set, and duality re-
lations exist between these sets of SEs under reversalegjrfmund/background and thinning/thickening
operations. The atomic morphological operations, thatameeSE, are intrinsically parallel and transla-
tionally invariant, and the best thinned skeletons areyced by sequences of operations that use multiple
SEs in parallel. A subset of SEs that presdreéh 4- and 8-connectivity have a high degree of symmetry,
can be used in the most parallel fashion without breakingectivity, and produce very smooth skeletons.
For thickening operations, foreground components eitbiédisit on convex hulls or expand indefinitely.
The self-limited convex hulls are formed either by horizdraind vertical lines, or by lines of slopel.
Four types of boundary contours can result for thickeningrations that expand indefinitely. Thickened
text images result in a variety of typographically inteirggtforms.

Keywords: image processing, thinning, thickening, skeletonizatiarphology, mathematical morphology,
connected components, image connectivity



1 Introduction

Theconnectivity-preservin¢CP) image transformations that underlie both thinning #unckening are iden-
tical. Thinning algorithms on binary images have a longdngstn image processing, because of their value
in deriving higher representations (and compressed engsyof the information in a bitmap. Thinned im-
ages possess a subset of the original information, thaefsiuer applications such as segmentation, feature
extraction, vectorization, and pattern identificationickened images have been of less interest; they allow
generation of connected component convex hulls.

There is great diversity both in the methods that have beed testhin image components, and in the
results obtained. Most proposed binary thinning algorgtoperate directly on the image. Approaches that
have been used include: (1) sequential, data-dependeratmpes (either on the image or on a line adjacency
graph representation) acting on component boundariesw@gp/label operations (typically 2-pass) on the
entire image, with subsequent operations depending orypieedf skeleton to be produced; (3) pipeline on
sequential pixels (typically with hardware assist); (4M8I parallel on all pixels (with or without hardware
assist). In spite of this diversity, at the heart of everyaltpm is a procedure that preserves connectivity.

A vast literature on thinning algorithms has accumulatethdLthe past quarter century, and it is amusing
to observe that many of the recent publications have the Wast’ in the title, as if without this assurance
the reader might assume the proposed method is slow! Thiggpadion of work on thinning may seem
surprising: are operations that preserve image connctiei complicated that there exist a multiplicity of
useful approaches? The answer to this question is in thenatiire, and the purpose of this paper is to
provide a simple framework for examining the complexity.

A few comments on various approaches may be useful. Theegflgiof a thinning procedure is not
simply an intrinsic property of the algorithm; it also dedsron both the hardware and the data within the
image. Parallel processing can be obtained either throipgiping, where each cycle a new pixel enters the
pipeline, or SIMD (“single instruction, multiple data”) gressing, where each cycle a set of pixels undergo
the same operation, or both. Operations within a pipelieeygpically local: a pixel can communicate only
with a set of its neighbors. The efficiency of a pipeline atture is proportional to the pipeline depth.
Unfortunately, pipeline depth is limited in connectivipyeserving operations using 3x3 local rules, because
as the image is transformed by thinning (for example) froohed four directions, each successive operation
usually must be applied to the transformed image. This enaféferred to asequentiathinning. In special
cases the pipeline can be extended to the full set of locatyat an added computational cost of restoring
pixels that should not have been altered within the pipdl@ian et al.[3]). Alternatively, an algorithm with
greater parallelism can be constructed by expanding therrerj support to 5x5. The pipeline depth can
then be increased to a full iteration cycle of all four thimgpidirections, but at great increase in complexity
(Rosenfeld[11]). For sparse images, a pipelined algorgilams efficiency, relative to SIMD, because only
a few pixels in the image need to be processed. In generalDSiMcessing is better suited to iterative,
sequential thinning and thickening, because the trangdrmage is always available at the next cycle. The



algorithms in this paper are designed to use only logicé¢ragperations, and can thus be implemented either
on a very simple SIMD machine or in word-parallel on a genpuapose computer. The number of iterations
required is proportional to the “thickness” of the largesticected component.

Many of the recent thinning algorithms are intended to belé@mented on selected pixels using integer
arithmetic. In 1984, Zhang and Suen[19] proposed a metho8-émnnected thinning, based on local opera-
tions with a 3x3 support. A number of refinements of this mdithen appeared[18, 8, 7, 6]. These methods
differ from each other to some extent in (1) the degree ofienosf free ends, (2) the number of operations
required for each iteration, and (3) the size of the supportie local operations. For example, the Zhang
and Suen algorithm used a support of 3, but some of the subseglgorithms implicitly used a support of
4.

Binary morphological approaches to thinning were first dbsd for hexagonal lattices by Golay[4], and
more recently summarized by Serra[15]. Maragos and SdBatettended this work in 1986, demonstrating
computation of Blum’s[2] medial axis skeleton on a squattdagrid.

Stefanelli and Rosenfeld[16], Rosenfeld[12] and Arcellal[1] took an approach to thinning quite sim-
ilar to the one presented here. In particular, the 1975 gapeparallel thinning algorithms provide insights
into both the conditions under which pixel removal can beedrined locally, and the constraints on par-
allelism that must be imposed to preserve connectivity.eRfedd[13, 14] describes a particular sequential
thinning rule, using 3x3 support, that can be applied toegith or 8-connectivity: successively from each
side, remove all border pixels that are connected to exactey connected component that is noteard
point (i.e., that has more than one pixel within the 3x3 windowh ¢ffect, we are providing a systematic
method for constructing parallel boolean implementatiohRosenfeld’s rule.] The section on thinning in
Rosenfeld’s book[14] is also recommended as an introducténcent[17] has recently given an excellent
review of skeleton types, along with an efficient sweepllatethod that uses the distance transform for their
computation.

We have chosen to use parallel SIMD algorithms with boolgzerations on binary images on a square
lattice. The framework developed is based on several idgaemetries between (a) foreground and back-
ground operations, (b) 4-connected and 8-connected coampgrand (c) thinning and thickening operations;
a minimal and most general set of 3gBucturing element§SES) that preserve connectivity (both 4 and 8)
under parallel operations; and subsets of these SEs thapesate together in parallel. For thinning, a typical
goal is to find operations that preserve free ends while ggingrrelatively smooth skeletons; for thickening,
various properties such as convex hulls and exoskeletturteare noted. The duality between thickening the
foreground and thinning the background helps unify the aip@ns; the set complement of a thickened image
is an exoskeleton of the thinned background. The formaliEmathematical morphology is used because
it most naturally expresses image transformations undestkationally-invariant operations. The choice of
3x3 basis is pragmatic: it is the smallest allowable kernel aigorithms can be developed with smooth and
conforming skeletons.

We shall see that both the choice of the SEs and their sequgiscimportant. Generation of a smooth



skeleton, particularly with preservation of 4-connedyiviequires a delicate balance between breaking con-
nectivity (by cascading too many different operations befigpdating the image) and creating a noisy, den-

dritic skeleton (by updating the image too frequently, lag\pixels that cannot be removed later). Examples

are given that show some of the considerable variation #ratesult when the choice of SEs and the sequenc-
ing of the operations is altered. Rules and guidelines asgmted for how operations should be sequenced
to give best results.

In the derivation of the thinning and thickening algorithmsvill be necessary to distinguish between two
different parallel operations. The first is tawmicparallel operation, where the image is thinned in parallel
by matches to a specific local 3x3 pattern of ON and OFF pixX€le second is theompositeoperation,
where the image is thinned in parallel by (the union of) mescto a set of local 3x3 patterns. A single
iteration is composed of a serial sequence of four parallel operatiitiseratomic or composite one for
each direction.

Section 2 introduces mathematical morphology as a basai@ilel connectivity-preserving operations.
The 3x3 SEs that preserve 4- and 8-connectivity on a squtieelaand are required for both thinning and
thickening, are presented in Section 3. Section 4 givedtssgeu thinning with atomic and composite parallel
operations. Thickening of connected components, pregdéniefly in Section 5, can result in either formation
of various convex hulls or growth limited only by neighbagiconnected regions. The paper ends with a short
summary.

2 Introduction to binary mor phological operations

For a survey of morphological methods, the reader is redleiehe reviews of Haralick[5] or Maragos[10]
for (different!) definitions of the basic operations. Oufidiions are taken from Haralick[5]. Binary mor-
phology describes translationally-invariant imageft@ge operations, where the computation of each pixel
in the new image is based on a set of logical operations bettveepixel and some of its neighbors. The
set of neighbors to be used is described by a “structuringei”’ (SE). The fundamental morphological
operationsgerosionanddilation[15], are most efficiently implemented by translating theaga and either
ANDing or ORIing it with itself. Specifically, lettind represent the binary image and the (usually) small set
S represent thetructuring elemen{SE), theerosione anddilation @ of I by S are defined as

z€S
Tes = UL (2)
z€S

wherel, is thetranslationof I along the pixel vector, and the set intersection and union operations represent
bitwise AND and OR, respectively. Translation is alwayshwiference to theenterof the SE; all 3x3 SEs
used here have “centers” located at the center position.selbperations can be implemented as raster
operations to take advantage of the word-parallel reptagen of the pixels within a computer.



To handle patterns consisting of both ON and OFF pixels,afEst generalized the erosion by defining
ahit-miss transformHMT, of an image/ by a disjoint pair A, B) of SEs as the set transformation

I®S=1I®(A,B)=(IcA)N(I°c B) (3)

where A is thehit SE specifying foreground pixel$3 is themissSE specifying background pixels, aitl
is the bit complement of. The hit-miss SES is in general three-valued, because it can incldoe’t-care
positions. The HMT returns an image with ON pixels at evepaton where the pattern of hits and misses
matches the original image.

Simple iterative morphological operations of thinning dhidkening can be described as a sequence of
atomicparallel operations. These are defined as follows.

DEFINITION 1 To thin an imagd by a SES = (A, B), apply the HMT specified by to 7 and remove any
matched pixels:

IeS=T1\(I®S)=1\(I®(A,B)) 4)
where\ denotes set subtraction
INJ=InJe (5)
DEFINITION 2 Likewise, to thicken the imadeby S, apply the HMT and add matched pixels:
IOS=TU(I®S)=1U(I®(A,B)) (6)
It is easily seen that thinning and thickening of an image bingle SE are dual operations.
DEFINITION 3 For a hit-miss SE5, denote the conjugate SE with hits and misses intercharyes!;
S=(A,B) < S°= (B, A) (7)
Then
I‘GS =I‘C(A,B) =1°\ (I‘®(A, B))
=I‘'N(I‘®(A,B)) = (I U(I‘®(A, B)))*
=({U((I‘'sA)n(IeB)
= (U {Ie(B,A))) = (IO(B,4)) = (IO5)° (8)

In words,thinning the background by is equivalent to thickening the foreground by the conjugdte, and
bit-complementing the result

This duality between atomic thinning and thickening opieret also extends to compaosite thinning, using
several SEs in parallel. Namely, if we take a union of HMTgwdifferent SEs before removing or adding



pixels, duality is preserved. The proof, a simple extensibthe one above, is given for the case with two
SEs:
]CQ(Sl, 52) =7 \ ((IC®51) U (IC®52)) =7I°N ((IC®51)C N (IC®SQ)C)

= (TU((I'©5) U (I'®52)))" = (T U (Ie57) U (I855)))" = (TO(57, 55))° (9)

These results do not depend on any special properties oBte$ed in the HMT. However, for thinning
and thickening, hit-miss SEs that preserve connectivitynailge components must be used. Such SEs will be
defined in the next section. It should be noted that the duadithinning and thickening operations does not
imply reversability. Duality describes how the same chaceyebe made in an image, using either thinning
or thickening. But these changes are in general irrevexsibl

Image thinning or thickening is an iterative process, thashgenerally uses a set of SEs. Suppose an
image is to be thinned by a sgf;, S, . .., Sy} of N SEs. If we simply cascade the thinning operations with
respect to the set, we get the result for a single iteration:

I = (...(I6S))®S)®---@Sy) (10)

Likewise, a cascade of thickenings can be applied to an inf&geduality, the thinning cascade on an image
I is equivalent to the following thickening cascade on the glement of/:

If = (... (I*OSy)OSy 1)O--- OS57) (11)

We shall see that the best thinning algorithms do not useadasof atomic operations. Instead, we will
need to subdivide the set &f SEs intoM < N subsety 7, Z,,...Z)}, where each subsét contains at
least one SE, some of th€ SEs may be contained in more than one subset, and M is typitatiorre-
sponding to the four lattice directions. For each subsetks, 8;, the image is sequentially thinned by set
subtracting the union of the HMTs specified by all SEs witthia set”;. We refer to an operation by the
union of HMTSs, using the se¥;, as acompositeoperation by~7;. It is crucial to choose the subséfs so
that the composite thinning (thickening) operation doddneak (join) connected components. We call such
connectivity-preserving subsets of SEscompatible The two major problems in devising parallel thinning
or thickening algorithms can thus be stated as follows:

1. To choose an appropriate set of connectivity-preserSiag,.

2. To choose an appropriate partitioning of the set of SEsgnmpatible subsets; for the composite
operations.

The construction of SEs that conserve both 4- and 8-convitgcis discussed in the next section. The
partitioning rules for thinning and thickening are givetbsequently.



3 Connectivity-preserving structuring elements

A 4-connected path is described as a sequence of horizamdavextical steps on a square lattice; an 8-
connected path includes diagonal steps as well. A set of QBlgpforms an n-connected component if an
n-connected path can be found between any two pixels in theTée following definitions apply to both
n-connectivity of foreground components ashgll (12-n)-connectivity of background components. Define
weakandstrongconnectivity preserving image operations, as follows:

DEFINITION 4 Weak CP SE: A SE that, under an atomic operation, can altentimber of pixels in an
n-connected component, but can neither split a connecteghonent, nor join two separate components.

We will see that this definition does not in general prevestamber of 4-connected components from
changing.

DEFINITION 5 Strong CP SE: A SE that satisfies weak CP, and additionallgeuan atomic operation,
neither removes all pixels within a component nor creates\a component.

Thus, weak CP SEs are more general than strong CP SEs. Aagroflthis definition is that operations
using strong CP SEs preserve the number of n-connected canisoin the foreground and the number of
dual components in the background.

These definitions explicitly emphasize symmetries betwleeamd 8-connectivity SEs (i.e., between fore-
ground and background operations). Because the more ¢evemkk CP SEs cannot create or remove 8-
connected components, we could alternatively have defireetk WP SEs only for 4-connected components.
However, descriptions of related phenomena (such as tigroi an endoskeleton and thickening to an ex-
oskeleton) are much simpler using symmetric definitions.

A hit-miss SE is a set of 3-valued elements (“hit”, “miss”ofdt-care”). Excluding the center element,
there are3® 3x3 hit-miss SEs. On a square lattice, any 3x3 SE is one of af$etr rotationalisomorphs
related to each other by a sequence of @@ations. For thinning or thickening, these four SEs apeciaily
used sequentially. Consider thinning from the left. Wetstéth a hypothesis, observed to be true in practice,
that all 3x3 CP SEs that can thin from the left in parallel wiih breaking connectivity must satisfy the
template shown in Figure 1. For this template, an open cind&ates either a “miss” or a “don’t care”, a
closed circle indicates either a “hit” or a “don’t care”, angty square can be any of the three, and we ignore
the center square.

o @
o-e
ol e

Figure 1. Most general pattern for parallel thinning frort.|&his isnota SE!




Based on this template, there &fe 32 = 576 possible SEs for thinning from the left. Of these, the subset
that satisfies strong 4-connectivity is described by the & in Figure 2. (For each SE in this paper, there
are four rotational isomorphs, that describe operatiam® fieft, right, top and bottom.) For all SEs, an open
circle is a “miss”, a closed circle is a “hit”, and an empty arpiis a “don’t care”.
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Figure 2. General SEs for strong 4-connectivity.

The analogous subset that satisfies strong 8-connectvétyawn in Figure 3.
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Figure 3. General SEs for strong 8-connectivity.

For weak 4 and 8-connectivity, the second and third SE of eatlean be replaced by a single SE, (
andSs). Note thatSy, can remove single pixel foreground 4-connected componantsthatS$ can remove
single pixel background 4-connected components.
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Figure 4. General SEs for weak 4- and 8-connectivity, thateiee ©;, S3) and S8, S95).

Operations that preserve 4-connectivity of foreground ponents also preserve 8-connectivity of back-
ground components, and v.v. This fundamental relationsatgreen the 4- and 8-connected sets is evident



from Figures 2, 3 and 4the SEs in each set are conjugate to each oth&liso, from these figures, it is
apparent that operations that preserve 4-connectivitgerfareground will in general break 8-connectivity
in the foreground, and v.v.

Consider again the duality between thinning and thicke(@)gA thickening ofl by one of theS® set is
equivalent to a thinning of® by S¢, which is the dual of5® in the S* set; and v.v.

Figures 5 and 6 give some simple and useful specializatibtteeanost general forms for 4-connected
and 8-connected SEs, respectively. Figure 7 shows twoazations that have a high degree of symmetry
and preservéoth4- and 8-connectivity. Use of these SEs within compositeatpns is illustrated in the
next section.
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Figure 5. Useful specialized SEs for strong 4-connectivity
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Figure 6. Useful specialized SEs for strong 8-connectivity
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Figure 7. The most general SEs that preserve both 4- andr@cuwity.

The SEsS? and S? in Figure 8 violate the basic constraints of the templateigufe 1. Although they
preserve connectivity if usexbquentiallyon individual pixels within the image, they break 4-conmnett (in



I andI¢, respectively) if used in parallel atomic operations.
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Figure 8. SEs that break 4-connectivity for parallel ogeretin 7 and/¢, resp.

It is useful to classify the various SEs by their symmetrypemties. Ordering these properties from high
to low symmetry:

e Class 1. Invariant under the combination of spatial inversind conjugation. These special SES;
and S5, preserve both 4- and 8-connectivity.

e Class 2. The reflection about any line through the centerymesl a rotational isomorph (i.e., a SE
that can be obtained from the first by a rotation of , 98C, or 270). For these SEs, there exists a
line through the center about which the SE is invariant uglection. SEs with horizontal/vertical
reflection symmetry (e.gS;, Si, S$, S§) are Class 2A. Those with diagonal reflection symmetry (e.g.
Sy, S5, 53, S8) are Class 2B.

e Class 3. Noreflection symmetry about any axis. There is neatsbin about any line through the center
that produces a rotational isomorph. These are all speatains of the most general forms that satisfy
weak CP. Nevertheless, they amry useful for thinning.

4 Atomic and composite thinning

In this section, we consider the diversity of results of nipgical thinning, examine and summarize some
thinning results, and draw several general conclusions.

'The reader familiar with the CPT theorem of physics mighemmtenuous analogy with the symmetries here. In the CPT
theorem, P stands for parity( spatial reflection), C for charge conjugatian {nterchange of “hits” and “misses” in the operators),
and T for time-reversal invariancey addition or removal of pixels). It is believed on very gendg@mnciples (and also observed)
that the combination CPT is conserved in all physical preeesOne might ask for the connection between the symmefribe
set of 3x3 CP operators and the analogous conservation lasefmected image components!



4.1 Diversity of thinning results

Composite thinning operations, using weak and strong CR &g a variety of results depending on the
specific SEs and their grouping into composite subsets. @sdts can be placed in six categories, ordered
by generally increasing pixel removal:

1. a“blobby” result that is not completely thinned,

2. a dendritic or “noisy” skeleton,

3. a smooth skeleton, without undue erosion of free ends,
4. a smooth skeleton, with erosion of some free ends,

5. a minimal topological skeleton, or

6. a broken skeleton.

Most atomic and many composite thinning operations do nattthcompletion. Define aompleteset
of SEs as one that can form a properly thinned skeleton uraiepasite thinning applied sequentially in the
four directions, as in (10). For atomic operations usingtheestrong and weak SEs shown in Figures 2, 3
and 4, onlyS{ andS$ (S5), when used with each of their three rotational isomorpbs)arise a complete set.
A noisy skeleton is formed by a complete set of SEs, but it &3sense formed too quickly. Dendritic growth
of free ends occurs spontaneously, without sufficient prginiHowever, with adequate pruning of ends, a
reasonably smooth skeleton can be formed without excessefid erosion. Such skeletons are desirable
because they embody a simple shape representation of theated components. Some SEs, sucl$;as
and S§ erode horizontal and vertical free ends of a thinned skelefbhis action can often be prevented
by specializing to SEs such as those in Figures 5, 6, and 7. pGsite operations that are able to erode
both horizontal and diagonal free ends will thin to a mininagdological skeleton. Thus, a singly connected
component will be reduced to a single point, a doubly coredecomponent to a thin ring, etc. Finally, if
compatible sets of SEs are not used, the connected comgomériie broken and may even disappear.

To preserve connectivity, it is necessary to compose thepatible setsZ; from SEs that thin from the
same “direction”. The compatible sets can then be invokgqdesetially either in rotation order (e.g., left, top,
right, bottom) or in cross order (e.g., left, right, top, foot). However, inspection of the SEs shows there is
an ambiguity in this specification, because some SEs acirtartla diagonal orientation. Resolution of this
ambiguity (namely, the identification of compatible sus}et a primary goal. Often, compatible subsets can
be formed by combining SEs that thin from adjacent “sidesdwidver, it is never possible to combine SEs
that thin from opposite sides; this typically breaks or étiates the skeleton.



4.2 Thinning action of SEs

Connectivity preservation for each algorithm is deterrdiegperimentally in three ways. The first step is
visual inspection of the skeletons formed on a noisy scateddmage. This is usually a reliable indicator.
Second, the number of 4- and 8-connected components in biground and background is calculated on
the same image before and after thinning. Finally, the thgpalgorithm is applied to an image composed of
all possible 4x4 bitmaps (modulo a9®tation), and the number of connected components is cdie®re
and after thinning.

Table 1 describes the action of some of the atomic thinnirgatons that preserve connectivity.

SE Complete  Smoothness Free-end erosion  Concave Hull
St Yes 3 No —
S4 No:1 1 45 H/V
S No:2 N.A. N.A. N.A.
S? No:1 5 No ?
S8 No 4 45 HIV
S8 Yes 3 No —
S8 Yes 1 H/V —
S8 No 3 No 45
StE No 2 No HIV
Sy® No 3 No 45

Table 1. Examples of atomic thinning operations.

In Table 1, “Concave Hull” means the orientation of unthicisegments; “No:1” means partially incom-
plete thinning with formation of concave hulls; “No:2” meawery few pixels removed; “N.A.” means not
applicable because few pixels are removed; “Smoothnedsieadkeleton is rated from 1 (best) to 5 (worst);
“H/V” means horizontal and vertical free-end erosion or hdaries for concave hull. Ratings of skeleton
smoothness are qualitatively determined from results anrsed (noisy) text images.

For 4-connected atomic thinning, onfi{ gives complete thinning, and is sufficient to implement dyai
dendritic approximation to a medial axis skeleton. For Brmxted atomic thinningss (and S§) give com-
plete thinning, but again leaving a noisy skelet@f. has the bad combination of (1) incomplete thinning
with 45° concave hulls and (2) horizontal/vertical free end erasiesults of some of these operations are
illustrated in Figure 9.
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Figure 9. Atomic thinning. (ay}; (b) Sy; (c) S%; (d) S3;
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Composite thinning is more interesting. Table 2 gives tedok some compatible sets of SEs (i.e., sets

that do not break connectivity).

Concave Hull
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2

S8, S8,

45

Stair
No

No:1
Yes
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Yes
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S8, S8

S8, S8, S8

No

S8, S8, 58, S8
S8, S8, 58, S8
S8, S8, S8, S8

No

No

No

SS’ SS’ SS’ S’?(rot)

Table 2. Examples of composite thinning operations.
In Table 2, “Total” free-end erosion means thinning to a togaal minimum; “Stair” free-end erosion means



“(rot)” indicates that a SE sucttg$,, , is rotated 90 clockwise from

Ircases;

see Table 1 for the mean

10 and 11.

4-connected 45ta

removing

illustrated

ions arel

. Results of sdnhese operat

Ies

f other entri

ingo

4,8,
1

ts partnerS

igures

inF

faufulafsfefefafafafafal

(b)

Figure 10. 4-Connected composite th

(@) St, S5, S3; (b) St, S5, S5, Sy (€) St S2, Sg; (d) S

inning.

4,8
2

) S

4,8
1(rot

78, S

4
1

o
u

Dooi
Dooosoonn

O0000oOoROD
oooooomo
ooomo

oomo

(d)

8
7(rot)

inning.
(d) S8, S8, S8, S

48.
2

Figure 11. 8-Connected composite th

(a) S8, S&; (b) S5, S8, S8, S8: (c) S8, S8,

least three SEmcm@mposite subset. As SEs are added to

In general, the best skeletons require at

ion of

becomes complete, and eros

teghinning
rgging

be seen by ca
12 shows the result when a fragment of scanned telinsed by two of the best of these algo-

te formation is supp

dendr

free ends is suppressed. The third factor is particulamy

the actions of others. An example of th

form the best composite sets

some of the SEwotectthe free ends from

dre results in Figures 11(a) and 11(b).

IS can

Figure
thms. It can be seen that the 4-connected skeleton

ends) to the 8-connected one.

ity (smoothness, preservation of free

ilqual

iSasin

Il



Otfice dacuments Office documents
siderably more cc  siderably more cc
ight say perverse  1ghtsay perversge

1ced 1n the recent 1ced 1n. the recent
(a) (b)

Figure 12.
(a) 4-connected thining usingy', S5, S5
(b) 8-connected thinning usingj, S5, S5, S¢

The following observations can be made on compatible setsoimposite thinning.

1. The very general SES), andS$ that are not strong CP shouhdt be used, because they tend to give
poor skeletons, often broken.

2. The SEsS} andS$ should not be used in combination with others because theledrorizontal and
vertical free ends.

3. The order of sequential use of the four compatible setstational isomorphs is not important.

4. It is advantageous to include pairs of low symmetry (CB)sSEs such as; andS3, that are mirror
reflections of each other across horizontal or verticalslitteough the center. These pairs define an
average thinning direction (horizontal or vertical); atB&s in the compatible sets must also thin from
this average direction.

5. It is permissible to use two adjacent rotational isomerphthose Class 1 and Class 2 SEs whose
symmetry axis is on & 45° axis (such as;”* andS?), along with other SEs that thin horizontally or
vertically from the average orientation of the rotatiorsgimorphs. This is the only condition in which
the same SE can be found in two different compatible 8ets

6. The best skeletons are made using combinations of (a)yownetry (Class 3) pairs, (b) higher sym-
metry (Class 1 and 2) SEs with H/V reflection symmetry, ancllowed rotational isomorphs.

Other combinations can be used for special purposes. Fonmgato thin 8-connected components
to a topological minimum, one can use a combinatiorshfind S8 to erode H/V and diagonal free-ends,
respectively. (Note tha$? in Figure 8b does not satisfy the general template in Figunmeetertheless, it
preserves 8-connectivity if).



5 Thickening

Recall that from the thinning/thickening duality, thickeg I with a compatible set of SEs i$f is equivalent
to thinning¢ with the conjugate set if*, and v.v. Then,

e If a compatible set of SEs produces complete thinning to alogeleton, the conjugate SEs will
produce complete thickening to an exoskeleton.

e Conversely, incomplete thinning by a compatible set of SHsial to thickening by the conjugate SEs
to a convex hull.

Thus, for example, we can choose SEs for 4-connected thigkémcompletion from compatible 8-connected
sets that give complete thinning.

Self-limited convex hulls are either formed by horizontadlavertical lines, or by lines at 45°. However,
as an algorithm for complete thickening to an exoskeletoegeds, the freely expanding component bound-
aries are found to have four different shapes. These carbeéidd by the slopes of the growing sides; the
boundary contours between regions of constant slope ddaoige with expansion. Four different boundary
contours have been identified: (1Y90°, (2) + 45°, (3) a right-angled quadrilateral bounded by lines with
slope either#an 0.5 and—tan~'2) or (—~tan'0.5 andtan'2), and (4) an octagon bounded by lines with
slopextan—10.5 and+tan 2. Table 3 gives the convex hull shapes for some self-limiting unlimited
(free expansion) thickenings; “quad” and “octagon” bouga@ntours refer to types (3) and (4), respectively.
Table 3 does not indicate the diverse textural properti¢gsefesulting exoskeleton.

Type Boundary Structuring elements

Self-limitng ~ H/V S8, 5% (S8, S%)

Self-limiting =+ 45° St 5y"

Free expansion H/V S (54,54, 5%): (S8, S1%); (S8, S8, SBY; (S8, S8, S8, 58)
Free expansion + 45° Sy

Free expansion quad ST, 55: (518, 898

Free expansion octagon St S1, Ston)i (S2%, S, S 0)i (S5, S5, 857)

rot

Table 3. Hull and expansion shapes for some thickenings.

Thickened text images result in a variety of typographycadteresting forms. Two examples with self-
limiting horizontal/vertical andt 45° convex hulls are given in Figure 13.
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Figure 13.
(a) 8-connected thickening usits and.S§ (to completion)
(b) 4-connected thickening usirff (5 iterations)

6 Summary

We have explored in some depth the parallel iterative imageations that maintain component connectivity
and are based on local rules with 3x3 support. The motivasiom establish rules for constructing all useful
algorithms, using only logical operations, that can beiedrout efficiently on either a general purpose
computer or on a SIMD array processor. The 3x3 support wasathieecause it is the smallest region that can
be used, reasonably smooth endo- and exoskeletons cambediceind a variety of interesting convex hulls
can be produced. A number of rules, largely found experiaignhave been given in terms of the symmetry
properties of strong CP SEs. Although few formal proofs averg there is certainly a deep algebraic basis
for these observations. We leave such proofs, as well asraltiin of the programme outlined in this paper,
for future work. The hope is that questions have been posedch a way as to inspire and perhaps even
direct further inquiry.

We have constructed the least restrictive 3x3 hit-miss B&iscan be used morphologically to preserve ei-
ther 4-connected or 8-connected regions of binary imagesn fhese SEs a few less general but very useful
pairs of SEs have been derived. The SEs vary in the degreddb ey erode and smooth the skeleton. Nev-
ertheless, many combinations of these SEs have been foariéalie reasonably smooth approximations to a
medial axis skeleton, for both 4-connected and 8-connesiteldétons, without undue erosion of skeletal end
points. This is particularly encouraging for 4-connectkelstons, for which prevention of dendritic growth
has been problematic. High symmetry SEs can be used ing@amfireserve both 4- and 8-connectivity.

Because of the duality between thinning and thickeningjltesvith parallel composite thinning can be
immediately extended to thickening with conjugate SEs.hwhickening we naturally focus on properties
such as convex hulls and aesthetics of partial and comptgiedations. Notwithstanding the low degree



of symmetry of the square lattice, there are several pamatibounded thickening operations with an 8-
sided expanding hullRegularizedmages, which can be formed by sequentially thinning to des&e and
thickening by a fixed amount, may be useful for some aspectsaije analysis.
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