
Presented at SPIE Visual Communications and Image Processing ’91: Image Processing

Conference 1606, pp. 320-334, Nov. 11-13, 1991, Boston MA.

CONNECTIVITY-PRESERVING MORPHOLOGICAL IMAGE
TRANSFORMATIONS

Dan S. Bloomberg

Xerox Corporation
Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304

Abstract

Methods for thinning connected components of an image differ in the size of support, type of con-

nectivity preserved, degrees of parallelism and pipelining, and smoothness and fidelity to structure of

the results. A unifying framework is presented, using imagemorphology, of all 4- and 8-connectivity-

preserving (CP) transformations that use a 3x3 basis of support on binary images discretized on a square

lattice. Two types of atomic CP transformations are defined:weakCP neither breaks nor joins components

andstrongCP additionally preserves the number of connected components. It is shown that out of thou-

sands of possible 3x3 hit-miss structuring elements (SEs),in their most general form there are only four

SEs (and their rotational isomorphs), for each of the two sets (4- and 8-connectivity), that satisfy strong

CP for atomic operations. Simple symmetry properties existbetween elements of each set, and duality re-

lations exist between these sets of SEs under reversal of foreground/background and thinning/thickening

operations. The atomic morphological operations, that useone SE, are intrinsically parallel and transla-

tionally invariant, and the best thinned skeletons are produced by sequences of operations that use multiple

SEs in parallel. A subset of SEs that preserveboth4- and 8-connectivity have a high degree of symmetry,

can be used in the most parallel fashion without breaking connectivity, and produce very smooth skeletons.

For thickening operations, foreground components either self-limit on convex hulls or expand indefinitely.

The self-limited convex hulls are formed either by horizontal and vertical lines, or by lines of slope�1.

Four types of boundary contours can result for thickening operations that expand indefinitely. Thickened

text images result in a variety of typographically interesting forms.

Keywords: image processing, thinning, thickening, skeletonization, morphology, mathematical morphology,

connected components, image connectivity
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1 Introduction

Theconnectivity-preserving(CP) image transformations that underlie both thinning andthickening are iden-

tical. Thinning algorithms on binary images have a long history in image processing, because of their value
in deriving higher representations (and compressed encodings) of the information in a bitmap. Thinned im-

ages possess a subset of the original information, that is useful for applications such as segmentation, feature
extraction, vectorization, and pattern identification. Thickened images have been of less interest; they allow

generation of connected component convex hulls.
There is great diversity both in the methods that have been used to thin image components, and in the

results obtained. Most proposed binary thinning algorithms operate directly on the image. Approaches that

have been used include: (1) sequential, data-dependent operations (either on the image or on a line adjacency
graph representation) acting on component boundaries; (2)sweep/label operations (typically 2-pass) on the

entire image, with subsequent operations depending on the type of skeleton to be produced; (3) pipeline on
sequential pixels (typically with hardware assist); (4) SIMD parallel on all pixels (with or without hardware

assist). In spite of this diversity, at the heart of every algorithm is a procedure that preserves connectivity.
A vast literature on thinning algorithms has accumulated during the past quarter century, and it is amusing

to observe that many of the recent publications have the word“fast” in the title, as if without this assurance

the reader might assume the proposed method is slow! This proliferation of work on thinning may seem
surprising: are operations that preserve image connectivity so complicated that there exist a multiplicity of

useful approaches? The answer to this question is in the affirmative, and the purpose of this paper is to
provide a simple framework for examining the complexity.

A few comments on various approaches may be useful. The efficiency of a thinning procedure is not
simply an intrinsic property of the algorithm; it also depends on both the hardware and the data within the

image. Parallel processing can be obtained either through pipelining, where each cycle a new pixel enters the
pipeline, or SIMD (“single instruction, multiple data”) processing, where each cycle a set of pixels undergo
the same operation, or both. Operations within a pipeline are typically local: a pixel can communicate only

with a set of its neighbors. The efficiency of a pipeline architecture is proportional to the pipeline depth.
Unfortunately, pipeline depth is limited in connectivity-preserving operations using 3x3 local rules, because

as the image is transformed by thinning (for example) from each of four directions, each successive operation
usually must be applied to the transformed image. This is often referred to assequentialthinning. In special

cases the pipeline can be extended to the full set of local rules, at an added computational cost of restoring
pixels that should not have been altered within the pipeline(Chin et al.[3]). Alternatively, an algorithm with

greater parallelism can be constructed by expanding the region of support to 5x5. The pipeline depth can
then be increased to a full iteration cycle of all four thinning directions, but at great increase in complexity
(Rosenfeld[11]). For sparse images, a pipelined algorithmgains efficiency, relative to SIMD, because only

a few pixels in the image need to be processed. In general, SIMD processing is better suited to iterative,
sequential thinning and thickening, because the transformed image is always available at the next cycle. The



algorithms in this paper are designed to use only logical raster operations, and can thus be implemented either
on a very simple SIMD machine or in word-parallel on a generalpurpose computer. The number of iterations

required is proportional to the “thickness” of the largest connected component.
Many of the recent thinning algorithms are intended to be implemented on selected pixels using integer

arithmetic. In 1984, Zhang and Suen[19] proposed a method for 8-connected thinning, based on local opera-
tions with a 3x3 support. A number of refinements of this method then appeared[18, 8, 7, 6]. These methods
differ from each other to some extent in (1) the degree of erosion of free ends, (2) the number of operations

required for each iteration, and (3) the size of the support for the local operations. For example, the Zhang
and Suen algorithm used a support of 3, but some of the subsequent algorithms implicitly used a support of

4.
Binary morphological approaches to thinning were first described for hexagonal lattices by Golay[4], and

more recently summarized by Serra[15]. Maragos and Schafer[9] extended this work in 1986, demonstrating
computation of Blum’s[2] medial axis skeleton on a square lattice grid.

Stefanelli and Rosenfeld[16], Rosenfeld[12] and Arcelli et al.[1] took an approach to thinning quite sim-
ilar to the one presented here. In particular, the 1975 papers on parallel thinning algorithms provide insights
into both the conditions under which pixel removal can be determined locally, and the constraints on par-

allelism that must be imposed to preserve connectivity. Rosenfeld[13, 14] describes a particular sequential
thinning rule, using 3x3 support, that can be applied to either 4- or 8-connectivity: successively from each

side, remove all border pixels that are connected to exactlyone connected component that is not anend

point (i.e., that has more than one pixel within the 3x3 window). [In effect, we are providing a systematic

method for constructing parallel boolean implementationsof Rosenfeld’s rule.] The section on thinning in
Rosenfeld’s book[14] is also recommended as an introduction. Vincent[17] has recently given an excellent
review of skeleton types, along with an efficient sweep/label method that uses the distance transform for their

computation.
We have chosen to use parallel SIMD algorithms with boolean operations on binary images on a square

lattice. The framework developed is based on several ideas:symmetries between (a) foreground and back-
ground operations, (b) 4-connected and 8-connected components, and (c) thinning and thickening operations;

a minimal and most general set of 3x3structuring elements(SEs) that preserve connectivity (both 4 and 8)
under parallel operations; and subsets of these SEs that canoperate together in parallel. For thinning, a typical

goal is to find operations that preserve free ends while generating relatively smooth skeletons; for thickening,
various properties such as convex hulls and exoskeleton texture are noted. The duality between thickening the
foreground and thinning the background helps unify the operations; the set complement of a thickened image

is an exoskeleton of the thinned background. The formalism of mathematical morphology is used because
it most naturally expresses image transformations under translationally-invariant operations. The choice of

3x3 basis is pragmatic: it is the smallest allowable kernel and algorithms can be developed with smooth and
conforming skeletons.

We shall see that both the choice of the SEs and their sequencing is important. Generation of a smooth



skeleton, particularly with preservation of 4-connectivity, requires a delicate balance between breaking con-
nectivity (by cascading too many different operations before updating the image) and creating a noisy, den-

dritic skeleton (by updating the image too frequently, leaving pixels that cannot be removed later). Examples
are given that show some of the considerable variation that can result when the choice of SEs and the sequenc-

ing of the operations is altered. Rules and guidelines are presented for how operations should be sequenced
to give best results.

In the derivation of the thinning and thickening algorithms, it will be necessary to distinguish between two

different parallel operations. The first is theatomicparallel operation, where the image is thinned in parallel
by matches to a specific local 3x3 pattern of ON and OFF pixels.The second is thecompositeoperation,

where the image is thinned in parallel by (the union of) matches to a set of local 3x3 patterns. A single
iteration is composed of a serial sequence of four parallel operations, eitheratomicor composite, one for

each direction.
Section 2 introduces mathematical morphology as a basis forparallel connectivity-preserving operations.

The 3x3 SEs that preserve 4- and 8-connectivity on a square lattice, and are required for both thinning and
thickening, are presented in Section 3. Section 4 gives results for thinning with atomic and composite parallel
operations. Thickening of connected components, presented briefly in Section 5, can result in either formation

of various convex hulls or growth limited only by neighboring connected regions. The paper ends with a short
summary.

2 Introduction to binary morphological operations

For a survey of morphological methods, the reader is referred to the reviews of Haralick[5] or Maragos[10]

for (different!) definitions of the basic operations. Our definitions are taken from Haralick[5]. Binary mor-
phology describes translationally-invariant image-to-image operations, where the computation of each pixel
in the new image is based on a set of logical operations between the pixel and some of its neighbors. The

set of neighbors to be used is described by a “structuring element” (SE). The fundamental morphological
operations,erosionanddilation[15], are most efficiently implemented by translating the image and either

ANDing or ORing it with itself. Specifically, lettingI represent the binary image and the (usually) small setS represent thestructuring element(SE), theerosion	 anddilation� of I by S are defined asI 	 S = \z2S I�z (1)I � S = [z2S Iz (2)

whereIz is thetranslationof I along the pixel vectorz, and the set intersection and union operations represent
bitwise AND and OR, respectively. Translation is always with reference to thecenterof the SE; all 3x3 SEs

used here have “centers” located at the center position. These operations can be implemented as raster
operations to take advantage of the word-parallel representation of the pixels within a computer.



To handle patterns consisting of both ON and OFF pixels, Serra[15] generalized the erosion by defining
ahit-miss transform, HMT, of an imageI by a disjoint pair(A;B) of SEs as the set transformationI 
 S = I 
 (A;B) � (I 	 A) \ (I
 	 B) (3)

whereA is thehit SE specifying foreground pixels,B is themissSE specifying background pixels, andI

is the bit complement ofI. The hit-miss SES is in general three-valued, because it can includedon’t-care

positions. The HMT returns an image with ON pixels at every location where the pattern of hits and misses

matches the original image.
Simple iterative morphological operations of thinning andthickening can be described as a sequence of

atomicparallel operations. These are defined as follows.

DEFINITION 1 To thin an imageI by a SES = (A;B), apply the HMT specified byS to I and remove any

matched pixels: I�S � I n (I
S) = I n (I
(A;B)) (4)

wheren denotes set subtraction I n J � I \ J
 (5)

DEFINITION 2 Likewise, to thicken the imageI byS, apply the HMT and add matched pixels:I
S � I [ (I
S) = I [ (I
(A;B)) (6)

It is easily seen that thinning and thickening of an image by asingle SE are dual operations.

DEFINITION 3 For a hit-miss SES, denote the conjugate SE with hits and misses interchanged,byS
:S = (A;B)() S
 = (B;A) (7)

Then I
�S = I
�(A;B) = I
 n (I

(A;B))= I
 \ (I

(A;B))
 = (I [ (I

(A;B)))
= (I [ ((I
 	 A) \ (I 	B)))
= (I [ (I
(B;A)))
 = (I
(B;A))
 = (I
S
)
 (8)

In words,thinning the background byS is equivalent to thickening the foreground by the conjugateof S, and

bit-complementing the result.
This duality between atomic thinning and thickening operations also extends to composite thinning, using

several SEs in parallel. Namely, if we take a union of HMTs with different SEs before removing or adding



pixels, duality is preserved. The proof, a simple extensionof the one above, is given for the case with two
SEs: I
�(S1; S2) � I
 n ((I

S1) [ (I

S2)) = I
 \ ((I

S1)
 \ (I

S2)
)= (I [ ((I

S1) [ (I

S2)))
 = (I [ ((I
S
1) [ (I
S
2)))
 � (I
(S
1; S
2))
 (9)

These results do not depend on any special properties of the SEs used in the HMT. However, for thinning

and thickening, hit-miss SEs that preserve connectivity ofimage components must be used. Such SEs will be
defined in the next section. It should be noted that the duality of thinning and thickening operations does not

imply reversability. Duality describes how the same changecan be made in an image, using either thinning
or thickening. But these changes are in general irreversible.

Image thinning or thickening is an iterative process, that most generally uses a set of SEs. Suppose an
image is to be thinned by a setfS1; S2; : : : ; SNg of N SEs. If we simply cascade the thinning operations with

respect to the set, we get the result for a single iteration:I =) (: : : ((I�S1)�S2)� � � ��SN) (10)

Likewise, a cascade of thickenings can be applied to an image. By duality, the thinning cascade on an imageI is equivalent to the following thickening cascade on the complement ofI:I
 =) (: : : ((I

S
N )
S
N�1)
� � �
S
1) (11)

We shall see that the best thinning algorithms do not use a cascade of atomic operations. Instead, we will

need to subdivide the set ofN SEs intoM � N subsetsfZ1; Z2; :::ZMg, where each subsetZi contains at
least one SE, some of theN SEs may be contained in more than one subset, and M is typically 4, corre-

sponding to the four lattice directions. For each subset of SEs,Zi, the image is sequentially thinned by set
subtracting the union of the HMTs specified by all SEs within the setZi. We refer to an operation by the
union of HMTs, using the setZi, as acompositeoperation byZi. It is crucial to choose the subsetsZi so

that the composite thinning (thickening) operation does not break (join) connected components. We call such
connectivity-preserving subsetsZi of SEscompatible. The two major problems in devising parallel thinning

or thickening algorithms can thus be stated as follows:

1. To choose an appropriate set of connectivity-preservingSEs.

2. To choose an appropriate partitioning of the set of SEs into compatible subsetsZi for the composite
operations.

The construction of SEs that conserve both 4- and 8-connectivity is discussed in the next section. The
partitioning rules for thinning and thickening are given subsequently.



3 Connectivity-preserving structuring elements

A 4-connected path is described as a sequence of horizontal and vertical steps on a square lattice; an 8-

connected path includes diagonal steps as well. A set of ON pixels forms an n-connected component if an
n-connected path can be found between any two pixels in the set. The following definitions apply to both

n-connectivity of foreground components anddual (12-n)-connectivity of background components. Define
weakandstrongconnectivity preserving image operations, as follows:

DEFINITION 4 Weak CP SE: A SE that, under an atomic operation, can alter thenumber of pixels in an

n-connected component, but can neither split a connected component, nor join two separate components.

We will see that this definition does not in general prevent the number of 4-connected components from

changing.

DEFINITION 5 Strong CP SE: A SE that satisfies weak CP, and additionally, under an atomic operation,

neither removes all pixels within a component nor creates a new component.

Thus, weak CP SEs are more general than strong CP SEs. A corollary of this definition is that operations

using strong CP SEs preserve the number of n-connected components in the foreground and the number of
dual components in the background.

These definitions explicitly emphasize symmetries between4- and 8-connectivity SEs (i.e., between fore-

ground and background operations). Because the more general weak CP SEs cannot create or remove 8-
connected components, we could alternatively have defined weak CP SEs only for 4-connected components.

However, descriptions of related phenomena (such as thinning to an endoskeleton and thickening to an ex-
oskeleton) are much simpler using symmetric definitions.

A hit-miss SE is a set of 3-valued elements (“hit”, “miss”, “don’t-care”). Excluding the center element,
there are38 3x3 hit-miss SEs. On a square lattice, any 3x3 SE is one of a setof four rotationalisomorphs,

related to each other by a sequence of 90Æ rotations. For thinning or thickening, these four SEs are typically
used sequentially. Consider thinning from the left. We start with a hypothesis, observed to be true in practice,
that all 3x3 CP SEs that can thin from the left in parallel without breaking connectivity must satisfy the

template shown in Figure 1. For this template, an open circleindicates either a “miss” or a “don’t care”, a
closed circle indicates either a “hit” or a “don’t care”, an empty square can be any of the three, and we ignore

the center square.

Figure 1. Most general pattern for parallel thinning from left. This isnot a SE!



Based on this template, there are26 �32 = 576 possible SEs for thinning from the left. Of these, the subset
that satisfies strong 4-connectivity is described by the four SEs in Figure 2. (For each SE in this paper, there

are four rotational isomorphs, that describe operations from left, right, top and bottom.) For all SEs, an open
circle is a “miss”, a closed circle is a “hit”, and an empty square is a “don’t care”.

(a)S41 (b) S42 (c) S43 (d) S44
Figure 2. General SEs for strong 4-connectivity.

The analogous subset that satisfies strong 8-connectivity is shown in Figure 3.

(a)S81 (b) S82 (c) S83 (d) S84
Figure 3. General SEs for strong 8-connectivity.

For weak 4 and 8-connectivity, the second and third SE of eachset can be replaced by a single SE (S420
andS820). Note thatS420 can remove single pixel foreground 4-connected components, and thatS820 can remove

single pixel background 4-connected components.

(a)S420 (b) S820
Figure 4. General SEs for weak 4- and 8-connectivity, that replace (S42 , S43 ) and (S82 , S83 ).

Operations that preserve 4-connectivity of foreground components also preserve 8-connectivity of back-
ground components, and v.v. This fundamental relationshipbetween the 4- and 8-connected sets is evident



from Figures 2, 3 and 4:the SEs in each set are conjugate to each other. Also, from these figures, it is
apparent that operations that preserve 4-connectivity in the foreground will in general break 8-connectivity

in the foreground, and v.v.
Consider again the duality between thinning and thickening(8). A thickening ofI by one of theS8 set is

equivalent to a thinning ofI
 by S
, which is the dual ofS8 in theS4 set; and v.v.
Figures 5 and 6 give some simple and useful specializations of the most general forms for 4-connected

and 8-connected SEs, respectively. Figure 7 shows two specializations that have a high degree of symmetry

and preserveboth4- and 8-connectivity. Use of these SEs within composite operations is illustrated in the
next section.

(a)S45 (b) S46 (c) S47 (d) S48 (e)S49
Figure 5. Useful specialized SEs for strong 4-connectivity.

(a)S85 (b) S86 (c) S87 (d) S88 (e)S89
Figure 6. Useful specialized SEs for strong 8-connectivity.

(a)S4;81 (b) S4;82
Figure 7. The most general SEs that preserve both 4- and 8-connectivity.

The SEsS4x andS8x in Figure 8 violate the basic constraints of the template in Figure 1. Although they
preserve connectivity if usedsequentiallyon individual pixels within the image, they break 4-connectivity (in



I andI
, respectively) if used in parallel atomic operations.

(a)S4x (b) S8x
Figure 8. SEs that break 4-connectivity for parallel operations inI andI
, resp.

It is useful to classify the various SEs by their symmetry properties1. Ordering these properties from high
to low symmetry:� Class 1. Invariant under the combination of spatial inversion and conjugation. These special SEs,S8;41

andS8;42 , preserve both 4- and 8-connectivity.� Class 2. The reflection about any line through the center produces a rotational isomorph (i.e., a SE

that can be obtained from the first by a rotation of 90Æ, 180Æ, or 270Æ). For these SEs, there exists a
line through the center about which the SE is invariant upon reflection. SEs with horizontal/vertical

reflection symmetry (e.g.,S41 , S44 , S81 , S84 ) are Class 2A. Those with diagonal reflection symmetry (e.g.,S420 , S820 , S47 , S87 ) are Class 2B.� Class 3. No reflection symmetry about any axis. There is no reflection about any line through the center
that produces a rotational isomorph. These are all specializations of the most general forms that satisfy

weak CP. Nevertheless, they areveryuseful for thinning.

4 Atomic and composite thinning

In this section, we consider the diversity of results of morphological thinning, examine and summarize some
thinning results, and draw several general conclusions.1The reader familiar with the CPT theorem of physics might note a tenuous analogy with the symmetries here. In the CPT
theorem, P stands for parity ($ spatial reflection), C for charge conjugation ($ interchange of “hits” and “misses” in the operators),
and T for time-reversal invariance ($ addition or removal of pixels). It is believed on very general principles (and also observed)
that the combination CPT is conserved in all physical processes. One might ask for the connection between the symmetriesof the
set of 3x3 CP operators and the analogous conservation law for connected image components!



4.1 Diversity of thinning results

Composite thinning operations, using weak and strong CP SEs, yield a variety of results depending on the

specific SEs and their grouping into composite subsets. The results can be placed in six categories, ordered
by generally increasing pixel removal:

1. a “blobby” result that is not completely thinned,

2. a dendritic or “noisy” skeleton,

3. a smooth skeleton, without undue erosion of free ends,

4. a smooth skeleton, with erosion of some free ends,

5. a minimal topological skeleton, or

6. a broken skeleton.

Most atomic and many composite thinning operations do not thin to completion. Define acompleteset

of SEs as one that can form a properly thinned skeleton under composite thinning applied sequentially in the
four directions, as in (10). For atomic operations using thethe strong and weak SEs shown in Figures 2, 3

and 4, onlyS41 andS82 (S83 ), when used with each of their three rotational isomorphs, comprise a complete set.
A noisy skeleton is formed by a complete set of SEs, but it is ina sense formed too quickly. Dendritic growth

of free ends occurs spontaneously, without sufficient pruning. However, with adequate pruning of ends, a
reasonably smooth skeleton can be formed without excess free end erosion. Such skeletons are desirable
because they embody a simple shape representation of the connected components. Some SEs, such asS44
andS84 erode horizontal and vertical free ends of a thinned skeleton. This action can often be prevented
by specializing to SEs such as those in Figures 5, 6, and 7. Composite operations that are able to erode

both horizontal and diagonal free ends will thin to a minimaltopological skeleton. Thus, a singly connected
component will be reduced to a single point, a doubly connected component to a thin ring, etc. Finally, if

compatible sets of SEs are not used, the connected components will be broken and may even disappear.
To preserve connectivity, it is necessary to compose the compatible setsZi from SEs that thin from the

same “direction”. The compatible sets can then be invoked sequentially either in rotation order (e.g., left, top,
right, bottom) or in cross order (e.g., left, right, top, bottom). However, inspection of the SEs shows there is
an ambiguity in this specification, because some SEs act to thin in a diagonal orientation. Resolution of this

ambiguity (namely, the identification of compatible subsets) is a primary goal. Often, compatible subsets can
be formed by combining SEs that thin from adjacent “sides”. However, it is never possible to combine SEs

that thin from opposite sides; this typically breaks or eliminates the skeleton.



4.2 Thinning action of SEs

Connectivity preservation for each algorithm is determined experimentally in three ways. The first step is

visual inspection of the skeletons formed on a noisy scannedtext image. This is usually a reliable indicator.
Second, the number of 4- and 8-connected components in both foreground and background is calculated on

the same image before and after thinning. Finally, the thinning algorithm is applied to an image composed of
all possible 4x4 bitmaps (modulo a 90Æ rotation), and the number of connected components is counted before

and after thinning.
Table 1 describes the action of some of the atomic thinning operations that preserve connectivity.

SE Complete Smoothness Free-end erosion Concave Hull
——– ————- ————— ———————- ——————S41 Yes 3 No —S42 No:1 1 45Æ H/VS44 No:2 N.A. N.A. N.A.S81 No:1 5 No ?S820 No 4 45Æ H/VS82 Yes 3 No —S84 Yes 1 H/V —S85 No 3 No 45ÆS4;81 No 2 No H/VS4;82 No 3 No 45Æ

Table 1. Examples of atomic thinning operations.

In Table 1, “Concave Hull” means the orientation of unthinned segments; “No:1” means partially incom-
plete thinning with formation of concave hulls; “No:2” means very few pixels removed; “N.A.” means not

applicable because few pixels are removed; “Smoothness” ofthe skeleton is rated from 1 (best) to 5 (worst);
“H/V” means horizontal and vertical free-end erosion or boundaries for concave hull. Ratings of skeleton

smoothness are qualitatively determined from results on scanned (noisy) text images.
For 4-connected atomic thinning, onlyS41 gives complete thinning, and is sufficient to implement a fairly

dendritic approximation to a medial axis skeleton. For 8-connected atomic thinning,S82 (andS83 ) give com-
plete thinning, but again leaving a noisy skeleton.S84 has the bad combination of (1) incomplete thinning
with 45Æ concave hulls and (2) horizontal/vertical free end erosion. Results of some of these operations are

illustrated in Figure 9.



(a) (b) (c) (d)

Figure 9. Atomic thinning. (a)S41 ; (b) S42 ; (c) S81 ; (d) S82 ;

Composite thinning is more interesting. Table 2 gives results for some compatible sets of SEs (i.e., sets

that do not break connectivity).

SEs Complete Smoothness Free-end erosion Concave Hull

—————— ————- ————— ——————— ——————S41 , S42 , S43 Yes 1 No —S41 , S42 , S43 , S44 Yes 1 Total —S41 , S45 , S46 Yes 1- No —S41 , S47 Yes 3 No —S41 , S47 , S47(rot) Yes 1 No —S4;81 , S4;82 Yes 2 No —S4;81 , S4;81(rot), S4;82 Yes 1 No —S82 , S83 Yes 2 No —S81 , S82 , S83 Yes 3 No —S82 , S83 , S84 Yes 1 H/V —S82 , S83 , S4;82 Yes 1 No —S85 , S86 No:1 1 Stair 45ÆS81 , S85 , S86 Yes 2 No —S82 , S83 , S85 , S86 Yes 1 No —S82 , S83 , S88 , S89 Yes 1 No —S85 , S86 , S88 , S89 Yes 2 No —S85 , S86 , S87 , S87(rot) Yes 1 No —

Table 2. Examples of composite thinning operations.
In Table 2, “Total” free-end erosion means thinning to a topological minimum; “Stair” free-end erosion means



removing 4-connected 45Æ staircases; “(rot)” indicates that a SE such asS4;81(rot), is rotated 90Æ clockwise from
its partnerS4;81 ; see Table 1 for the meaning of other entries. Results of someof these operations are illustrated

in Figures 10 and 11.

(a) (b) (c) (d)

Figure 10. 4-Connected composite thinning.

(a)S41 , S42 , S43 ; (b) S41 , S42 , S43 , S44 ; (c) S41 , S45 , S46 ; (d) S4;81 , S4;81(rot), S4;82

(a) (b) (c) (d)

Figure 11. 8-Connected composite thinning.
(a)S85 , S86 ; (b) S82 , S83 , S85 , S86 ; (c) S82 , S83 , S4;82 ; (d) S85 , S86 , S87 , S87(rot)

In general, the best skeletons require at least three SEs in each composite subset. As SEs are added to

form the best composite sets, dendrite formation is suppressed, thinning becomes complete, and erosion of
free ends is suppressed. The third factor is particularly surprising; some of the SEsprotectthe free ends from

the actions of others. An example of this can be seen by comparing the results in Figures 11(a) and 11(b).
Figure 12 shows the result when a fragment of scanned text is thinned by two of the best of these algo-

rithms. It can be seen that the 4-connected skeleton is similar in quality (smoothness, preservation of free
ends) to the 8-connected one.



(a) (b)

Figure 12.

(a) 4-connected thining usingS41 , S42 , S43
(b) 8-connected thinning usingS82 , S83 , S85 , S86

The following observations can be made on compatible sets for composite thinning.

1. The very general SEsS420 andS820 that are not strong CP shouldnot be used, because they tend to give

poor skeletons, often broken.

2. The SEsS44 andS84 should not be used in combination with others because they erode horizontal and
vertical free ends.

3. The order of sequential use of the four compatible sets of rotational isomorphs is not important.

4. It is advantageous to include pairs of low symmetry (Class3) SEs such asS42 andS43 , that are mirror
reflections of each other across horizontal or vertical lines through the center. These pairs define an
average thinning direction (horizontal or vertical); other SEs in the compatible sets must also thin from

this average direction.

5. It is permissible to use two adjacent rotational isomorphs of those Class 1 and Class 2 SEs whose
symmetry axis is on a� 45Æ axis (such asS4;81 andS47 ), along with other SEs that thin horizontally or

vertically from the average orientation of the rotational isomorphs. This is the only condition in which
the same SE can be found in two different compatible setsZi.

6. The best skeletons are made using combinations of (a) low symmetry (Class 3) pairs, (b) higher sym-

metry (Class 1 and 2) SEs with H/V reflection symmetry, and (c)allowed rotational isomorphs.

Other combinations can be used for special purposes. For example, to thin 8-connected components
to a topological minimum, one can use a combination ofS84 andS8x to erode H/V and diagonal free-ends,

respectively. (Note thatS8x in Figure 8b does not satisfy the general template in Figure 1; nevertheless, it
preserves 8-connectivity inI).



5 Thickening

Recall that from the thinning/thickening duality, thickening I with a compatible set of SEs inS8 is equivalent

to thinningI
 with the conjugate set inS4, and v.v. Then,� If a compatible set of SEs produces complete thinning to an endoskeleton, the conjugate SEs will

produce complete thickening to an exoskeleton.� Conversely, incomplete thinning by a compatible set of SEs is dual to thickening by the conjugate SEs

to a convex hull.

Thus, for example, we can choose SEs for 4-connected thickening to completion from compatible 8-connected
sets that give complete thinning.

Self-limited convex hulls are either formed by horizontal and vertical lines, or by lines at� 45Æ. However,
as an algorithm for complete thickening to an exoskeleton proceeds, the freely expanding component bound-

aries are found to have four different shapes. These can be labelled by the slopes of the growing sides; the
boundary contours between regions of constant slope do not change with expansion. Four different boundary

contours have been identified: (1) 0Æ/90Æ, (2)� 45Æ, (3) a right-angled quadrilateral bounded by lines with
slope either (tan�10:5 and�tan�12) or (�tan�10:5 andtan�12), and (4) an octagon bounded by lines with
slope�tan�10:5 and�tan�12. Table 3 gives the convex hull shapes for some self-limitingand unlimited

(free expansion) thickenings; “quad” and “octagon” boundary contours refer to types (3) and (4), respectively.
Table 3 does not indicate the diverse textural properties ofthe resulting exoskeleton.

Type Boundary Structuring elements
———- ————- —————————–

Self-limiting H/V S82 ; S4;81 ; (S82 , S83 )
Self-limiting � 45Æ S41 ; S4;82
Free expansion H/V S44 ; (S41 , S42 , S43 ); (S84 , S4;81 ); (S81 , S85 , S86 ); (S82 , S83 , S85 , S86 )
Free expansion � 45Æ S42
Free expansion quad (S41 , S47 ); (S4;81 , S4;82 )
Free expansion octagon (S41 , S47 , S47(rot)); (S4;82 , S4;81 , S4;81(rot)); (S82 , S83 , S4;82 )

Table 3. Hull and expansion shapes for some thickenings.

Thickened text images result in a variety of typographically interesting forms. Two examples with self-
limiting horizontal/vertical and� 45Æ convex hulls are given in Figure 13.



(a) (b)

Figure 13.

(a) 8-connected thickening usingS82 andS83 (to completion)
(b) 4-connected thickening usingS41 (5 iterations)

6 Summary

We have explored in some depth the parallel iterative image operations that maintain component connectivity

and are based on local rules with 3x3 support. The motivationis to establish rules for constructing all useful
algorithms, using only logical operations, that can be carried out efficiently on either a general purpose

computer or on a SIMD array processor. The 3x3 support was chosen because it is the smallest region that can
be used, reasonably smooth endo- and exoskeletons can be formed, and a variety of interesting convex hulls

can be produced. A number of rules, largely found experimentally, have been given in terms of the symmetry
properties of strong CP SEs. Although few formal proofs are given, there is certainly a deep algebraic basis

for these observations. We leave such proofs, as well as elaboration of the programme outlined in this paper,
for future work. The hope is that questions have been posed insuch a way as to inspire and perhaps even
direct further inquiry.

We have constructed the least restrictive 3x3 hit-miss SEs that can be used morphologically to preserve ei-
ther 4-connected or 8-connected regions of binary images. From these SEs a few less general but very useful

pairs of SEs have been derived. The SEs vary in the degree to which they erode and smooth the skeleton. Nev-
ertheless, many combinations of these SEs have been found that leave reasonably smooth approximations to a

medial axis skeleton, for both 4-connected and 8-connectedskeletons, without undue erosion of skeletal end
points. This is particularly encouraging for 4-connected skeletons, for which prevention of dendritic growth
has been problematic. High symmetry SEs can be used in parallel to preserve both 4- and 8-connectivity.

Because of the duality between thinning and thickening, results with parallel composite thinning can be
immediately extended to thickening with conjugate SEs. With thickening we naturally focus on properties

such as convex hulls and aesthetics of partial and completedoperations. Notwithstanding the low degree



of symmetry of the square lattice, there are several parallel unbounded thickening operations with an 8-
sided expanding hull.Regularizedimages, which can be formed by sequentially thinning to a skeleton and

thickening by a fixed amount, may be useful for some aspects ofimage analysis.
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