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ABSTRACT

Beginningwith anobserved documentimageanda modelof how the imagehasbeendegraded,DocumentImage
Decodingrecognizesprintedtext by attemptingto find amostprobablepaththroughahypothesizedMarkov source.
The incorporationof linguistic constraints,which areexpressedby a sequentialpredictive probabilisticlanguage
model,canimprove recognitionaccuracy significantlyin thecaseof moderatelyto severelycorrupteddocuments.
Two methodsof incorporatinglinguistic constraintsin thebest-pathsearcharedescribed,analyzedandcompared.
Thefirst, calledtheiteratedcompletepathalgorithm,involvesiteratively rescoringcompletepathsusingconditional
languagemodelprobabilitydistributionsof increasingorder, expandingstateonly asnecessarywith eachiteration.
A propertyof thisapproachis thatit resultsin asolutionthatis exactlyoptimalwith respectto thespecifiedsource,
degradation,andlanguagemodels;no approximationis necessary. The secondapproachconsideredis the Stack
algorithm, which is often usedin speechrecognitionand in the decodingof convolutional codes. Experimental
resultsarepresentedin which text line imagesthathave beencorruptedin a known way arerecognizedusingboth
the ICP andStackalgorithms. This controlledexperimentalsettingpreserves many of the essentialfeaturesand
challengesof realtext line decoding,while highlightingtheimportantalgorithmicissues.
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1. INTRODUCTION

DocumentImageDecoding(DID)
��� �

is a methodof text recognitionin documentimagesthat is basedon a com-
municationssystemsview of the documentcomposition,printing, degradation,andscanningprocesses.Among
theadvantagesof DID arehigh recognitionaccuracy in situationswhereextensive customizationis allowable,the
ability to recognizesomehigher-level structurealongwith thetext, andtheability to extendandimprove thesystem
within a consistentprobabilisticframework. Surprisingly, in mostof thework on DID reporteduntil now, thehigh
recognitionaccuracy hasbeenachieved despitea lack of any prior specificationof which recognizedstringsare
linguistically valid andwhicharenot.

Recently, atechniquefor incorporatinglinguisticconstraintsinto DID wasproposedandpartiallyexploredusing
a simulated,one-dimensionalMorse-codesignalingschemehaving known corruptionparameters.

�
While useful

in illustrating the functioning of the proposedalgorithm, that treatmentdid not placethe techniquein sufficient
perspective to draw conclusionsaboutit. In this paper, we examinethat techniquemoreclosely, andcompareit
with theStack algorithm,which is a standard,widely usedalternative. In addition,we replacetheone-dimensional
Morse-codesettingwith oneinvolving synthetictwo-dimensionaltext-line images.For methodologicalreasons,we
continueto exercisetight controlover themannerin which the imagesareproducedandcorrupted.Nevertheless,
working on two-dimensionalimagesof printed text improves both the realismandthe relevanceof the resulting
comparisonandanalysisover thepreviousexperimentalframework.
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1.1. Document Image Decoding

We briefly review the essentialelementsof traditionalDocumentImageDecoding. For details,the readeris re-
ferredto KopecandChou.

�
In the DID framework, documentimagesareregardedashaving beenproducedby

transitioningthrougha Markov source,which is a probabilisticfinite-statemachine.Thesourcebeginsin a special
start stateandterminatesin a specialstopstate.Eachtransitionwithin thesourcecausestheimagingof a character
template(abitmap)onthepageatacurrentcursorlocation,thenadvancesthatlocationby atwo-dimensionalvector
displacementin preparationfor printing the next character. The setof charactertemplatesincludeswhitespaceof
variouskinds.Formally, eachtransitionin thesourceis assigneda four-tupleconsistingof acharactertemplate,the
two-dimensionaldisplacementby which to advancethecursor, theprior probabilityof following thattransition,and
astringlabel.Notethatthenotionof prior probabilityhereis quitelimited; for instance,it doesnot take into account
whatprevious transitionsmight have occurredon thesamepaththroughtheMarkov source.Every completepath
throughthesourcedefinesa documentimageandanassociatedtranscription:theimageis theunionof thebitmaps
imagedoneachtransition,andthetranscriptionis theconcatenationof theassociatedstringlabels.It shouldbenoted
thatmorethanonecompletepaththroughthesourcemaygive riseto thesameimageand/orthesametranscription.

After thedocumentimagehasbeenformedin this way, it is assumedto besubjectedto someform of random
corruption,which is the causeof someuncertaintyin the recognitionprocess.Recognitionproceedsby finding
a completepath throughthe hypothesizedMarkov sourcethat “best” explains the observed image. Specifically,
a completepathis soughtthat is mostprobableconsideringtheentireimageasevidence,wheretheprobability is
computedonthebasisof theprior probabilitiesof thetransitions,thelikelihoodsof theassociatedimagedtemplates,
andtherandomcorruptionprocess.Becausemultiple pathscancorrespondto thesametranscription,choosingthe
most probablecompletepath is not the sameas choosingthe most probabletranscription. The probability of a
transcriptionis properlycalculatedby summingthe probabilitiesof all of the completepathsthat areconsistent
with thattranscription.Nevertheless,experiencehasshown thatchoosingamessagewith thegreatestcomplete-path
probability is usuallya goodapproximationto choosingthemessagewith thehighestposteriorprobability; this is
known as the Viterbi approximation to the maximuma posteriori probability (MAP) decisionrule. We usethis
approximationthroughout.Thus,givenanobserveddocumentimage,therecognitiontaskreducesto findingaMAP
paththroughtheMarkov source.Traditionally, dynamicprogramming� hasbeenusedfor this task.

1.2. Separable Markov Sources and Text Line Decoding

In the generalDID setting,groupsof statesin the Markov sourcecorrespondto distinct regionsof the document
image,which expressestheview thatdifferentgenerative modelsareappropriatefor regionsof differenttypes.For
example,in a Markov sourcefor the first pageof a two-columnpaper, onegroupof statesmight correspondto
the title line, anotherto theabstractblock, andanotherto the left text column,etc. Themostbasictype of group
is that for a text column. Text columnscanbe modeledby a two-level Markov sourcestructurein which the top
level characterizesandaccountsfor the vertical placementof lines of text, andthe bottomlevel accountsfor the
formation of the text lines themselves.	 A Markov sourcefitting this descriptionis termedseparable. Because
linguistic constraintsbearmoststronglyon recognitionwithin text lines, we focusour attentionthereinsteadof
on moregeneraltwo-dimensionalstructures.The recognitionproblemthusbecomesthat of finding a MAP path
throughthelower-level text-line subsourcefor agivenobservedtext line image.

In the absenceof any linguistic constraints,a suitablesubsourcemodelfor a text line consistsof a startstate,
a singleinterior state,anda stopstate.The interior statehasoneself-transitionfor eachcharactertemplatein the
font. Generationof a text line begins in thestartstate,with thecursorat a predeterminedhorizontalpositionin the
text-line image.Thefirst transitionis into theinteriorstate,andsubsequenttransitionsloopbackinto thatstate,each
time imaginga characterandadvancingthecursorhorizontally. After the text line hasthusbeenproduced,a final
transitionis madeinto thestopstate,whereupontheprocessterminates.Typically, thecursorpositionsspecifiedfor
thestartandstopstatesaretheleft- andright-mostprintablepixel locationsin theimage,respectively. A complete



paththroughthissubsourcecanbeconvenientlyrepresentedby atrellis diagram,whereinnodesrepresenthorizontal
pixel locationsalongthe baseline,anddirectededgesrepresentthepossibletransitionsthat connectthe nodes.A
completepath is obtainedby following a sequenceof edgesfrom the startnodeto the stopnode. Eachedgeis
labeledwith a scorethat canbe interpretedasa posteriorprobability: the productof the prior probability of the
transitionandthe likelihoodof thecorrespondingimagedtemplatein thespatiallocationthat theedgespans.It is
convenientto representthesescoresaslogarithms.In ourdiscussionof varioussearchalgorithms,wewill generalize
thetrellis graphstructureconsiderablyin Section3. As mentioned,in theabsenceof linguistic constraints,finding
the highest-scorepathcanbe accomplishedby a straightforward applicationof dynamicprogramming.Dynamic
programmingona trellis weightedwith log likelihoodsis oftenreferredto astheViterbi algorithm, 
 andwewill so
referto it here.

2. SOFT LINGUISTIC CONSTRAINTS

As describedabove, DID makes no useof prior knowledgeaboutwhich recognizedtranscriptionsaremore lin-
guisticallyvalid thanothers. It is desirablefor thepurposeof reducingerror rateto provide DID with a meansof
preferringlinguistically valid transcriptionsover lessvalid ones.

DID choosesthe transcriptionthat correspondsto a paththat hasthe highestposteriorprobability, wherethat
probability is computedas the sum, over all transitionsalong the path, of the sum of the log likelihood of that
transitionandanunconditionallog prior probabilityof makingthat transition.A naturalway of expressinga prior
preferencefor transcriptionsthat are deemedvalid is to make the prior probabilitiesattachedto eachtransition
dependon which transitionswerefollowedpreviously alongthepath. Assigningtheseprobabilitiesis thefunction
of a languagemodel, whichis discussednext. However, makingtheprior probabilitydependonanythingbesidesthe
identityof theoriginatingnodeis aviolationof theMarkov assumption,andgreatlycomplicatesthesearchproblem.
Discussionof best-pathsearchin thepresenceof a languagemodelis takenup in detailin Section3.

2.1. Probabilistic Language Model

Linguistic validity can be measuredby meansof a probabilistic languagemodel, which in its full generalityis
a probability distribution over all finite sequencesover the alphabetof string labelsattachedto transitionsin the
Markov source. Usually, the string labelson the transitionsaresinglecharacters.Hence,for simplicity, we will
referto thestringlabelsattachedto thetransitionsascharacters,andto sequencesof thestringlabelsasstrings. For
usein DID werestrictthelanguagemodelto befactorableasasequenceof probabilitydistributionsover individual
characters,eachconditionedon a subsetof precedingcharacters.Theseconditionalprobabilitiesthenreplacethe
unconditionalprior probabilitieson thetransitionsin theoriginal DID formulation. Let thealphabetbe � , andlet� ��
�������
 ��� denotea stringwith ����� � 
�������
�������
�� . Let � bea terminationsymbol,andlet ��� � � �"!#�%$ . We
view stringsashaving beenformedby thefollowing process.Charactersaregeneratedsequentiallyaccordingto a
sequenceof conditionalprobabilitydistributions

&'�)(*���,+ � ��
������#
 ���*- �/.0� &'��(*�1�2+43'��(*� ��
�������
 ���5- �6.�. (1)

where ���7� �8� , � ��
������#
 ���*- � � � , �7�9��
2:;
������ , andthefunction 3'��(*� ��
������#
 �1�*- �/. mapscontexts into equivalence
classes.Thestringterminateswhenthesymbol � is generated;in termsof theMarkov sourcethis correspondsto a
transitioninto thestopstate.

For simplicity, we remove thedependenceof & in (1) on � , andrestrict 3<��(*� ��
������#
 ���*- �6. to beof theform

3<��(*� ��
������#
 ���*- �/.0� = (*� �>
�������
 ���5- �/. if �@?BA(*���5-DCFE ��
������#
 ���*- �/. otherwise
(2)



for a fixed small integer A . With theserestrictions,(1) is referredto as a character A -gram language model,
hereinafterreferredto simply asan A -grammodel:

&'��(*���,+ � ��
�������
 ���*- �/.7� &G(*�1�,+ ���*-DCIH5E ��
�������
 ���*- �/. (3)

where A � �9JLKNM ! �,
,A $ . Althoughthesearchtechniquesto beconsideredin Section3 will remainpracticalwhen
a classof languagemodelsmore generalthan A -gramsis used, A -gramsare simple and effective in capturing
importantstatisticalregularity in naturallanguagestrings.Wethereforeadopttheirusehere.To illustratetheability
of the A -gramto modelEnglish,weexhibit apseudorandomstringthatwasobtainedby sequentiallysamplingfrom
a O -grammodeltrainedon theBrown corpusP :

And fine alone other Itality and agains she tumor his result, from
of Brannot faculous shall precentative inter at lear time to much a
relanguages proposal? Baer fall over Open-megaw of most used agreen
during represearchbishes of chlor] But the first position a little
rear intenant year-olds to And also if we should beef childing face
graduates

Theimplementationandtrainingof the A -grammodelusedin thisstudyareaswerereportedin theprevious“Morse
code”paper.

�
2.2. Auxiliary Upper Bound Functions

In additionto theconditionalprobabilitiesprovidedby (3),oneof thesearchtechniquesto beconsideredin Section3
requiresthat a setof upper-boundfunctionsof a particularform be definedon the probabilitiesin additionto the
probabilitiesthemselves.Wedescribethemnow, althoughtheirpurposewill notbefully clearuntil Section3.3.For
afixed A -gram,wedefineasequenceof auxiliary functionsQ�R 
�������
 Q CSHT- � as

Q#U (*���,+ � �*- U 
������#
 ���*- �/.0� JLV1WX HZY\[ H*]_^)`4a4a4a ` X HZY\b,Y ^ &c(*���,+ �1�*-DCIH5E ��
�������
 ���5- �/. (4)

which for each d provides an upperboundon the probability that can be assignedby the A -gram to ��� when
immediatelyprecededby (*� �*- U 
�������
 ���*- �/. . For example,Q�R specifiesthemaximumprobabilitythatcanbeassigned
by themodelto ��� in anycontext, while at theotherextreme,Q Ce- � is simply anothernamefor & . Notethatfor any
fixedstringsection (*� �*-DCIHfE � 
�������
 � � . , Q�U is nonincreasingin d . Notefurtherthatfor sufficiently large A , Q R will be
closeto � for every character. This is becauseevery character, nomatterhow infrequentin absoluteterms,becomes
nearlycertainin somecontext. As d increases,theboundtightens.

3. BEST-PATH SEARCH IN THE PRESENCE OF A LANGUAGE MODEL

The introductionof even a modestlycomplex languagemodel (e.g. A �hg ) immediatelycreatescomputational
challengesfor thedecodingalgorithm. TheViterbi approachcannotbe extendedin theobvious way (i.e., by tak-
ing advantageof the A -gram’s limited memoryto conductthesearchin an expandedtrellis in which theMarkov
assumptionis onceagainobeyed),becausethestatespacefor thesearchproblemnow includesboth imageinfor-
mationandlanguagemodelinformation,andsothesizeof thestatespacehasincreasedsignificantly. For example,
when Ai�jg , thestatespacegrows from k to k + � + � , where k is thewidth in pixelsof thetext-line image,and+ � + is thealphabetsize. We mustthereforeconsideralgorithmsthatdo not explore theentirestatespace.Herewe
benefitfrom algorithmictechniquesfrom relateddomains:convolutionalcoding,l speechprocessing,m andartificial
intelligence,� thatcanbeadaptedto DID.

While languagemodelingis helpful in reducingerrors,in DID theimagenormallyhasmoreinfluencethanthe
languagemodel in determiningthe bestdecoding.Accordingly, oneapproachis to factorthe problem,solving it



first with templatematchingwithout a languagemodel,generatingthe n -bestsolutions,andthenrescoringthese
solutionswith the languagemodelto obtainthebestsolution.

� R While thecomputationof the n -bestsolutionsis
feasiblefor small n , experienceshows that n mustbevery large (on theorderof 500 for anaveragetext line) to
includethe bestsolution.

���
It appearsthat several short, independentsectionsof ambiguityin a line of text, each

with only a few nearlyequivalentdecodings,cancombineto createa largenumberof nearlyequivalentdecodings
for theentireline. To bebothefficient andeffective, the languagemodelmustbemoretightly integratedwith the
best-pathsearchalgorithmthanis achievedby n -bestrescoring.

Prior to statingthe two specificalgorithmsto be compared,we will set the stageby identifying two broad
categoriesof searchalgorithms:bound-basedtechniquesthatfind thebestsolutionby guaranteeingthat thestates
omittedby thesearchcannotbepartof thebestsolution,andestimation-basedtechniquesthat focusthesearchon
themostrelevantportionsof thestatespace.

3.1. Search Techniques Based on Bounding

Discussionis simplified if we abstractthe problemto a graph-theoreticsetting. Considera directedgraph o �(qp 
,r�. , wherethe nodesp correspondto states,which in our caseconsistof positionsin the imageandcontext
relevant to the languagemodel,andtheedgesr correspondto transitions.Incorporationof positionaspartof the
state,andtherequirementthateachtemplatehave nonzerowidth, ensurethat thegraphhasno cycles. In a manner
analogousto thescoringof edgesin thetrellis describedin Section1.2,theedgesr aresuchthateachis associated
with a charactertemplateandis weightedwith a scorethat is the sumof two components:the log likelihoodof
matchingthe characterat the imagepositionassociatedwith the originatingnode,andthe log of the conditional
probability (3) returnedby the languagemodelwhensuppliedwith the context specifiedby the originatingnode.
Theuseof conditionalratherthanunconditionallanguagemodelprobabilitiesdistinguishesthisgraphfromthegraph
developedin Section1.2. Thebestdecodingis takento bethe largest-weightpaththroughthis graph.If thegraph
weresmall enoughtherewould be many differentalgorithmsthat could be usedto find the bestpath— dynamic
programminghasalreadybeenmentioned.For largegraphs,apopularboundingtechnique,theA* algorithm,� uses
a function s (*� . which is easilycomputed,andwhich givesanupperboundon thebestpossiblepathfrom a node �
to thestopstate.Thesearchthenproceedsby iteratively exploring theedgesr leaving themostpromisingstate,as
measuredby thefunction t (*� .Gu s (*� . , where t (*� . is theactualpartialpathscorefrom sourceto � , and s (*� . is an
upperboundon theweightof any pathfrom � to thestopstate.Even thoughit doesnot explore thewholegraph,
theA* algorithmfindsthebestsolution,becausewhenthesearchreachesthestopstate,all unexplorednodeshave
lower t (*� .vu s (*� . thanthestopstate,andsothey cannotbepartof thebestsolution.

Thesuccessof theA* algorithmdependsentirelyon theboundingfunction s (*� . . Easilycomputedandaccurate
boundss (*� . leadto very efficient algorithms. A* approacheshave beenusedin speechprocessing,m where s (*� .
canbecreatedby afirst (backward)passof thealgorithmwith eitherno languagemodelor a languagemodelthatis
smallenoughto allow for aViterbi computationof thebestpossibleinterpretationof theremainderof thesignal.A
second(forward)passthenusesanA* algorithmwith aboundingfunctionthatis basedon thefirst pass.

For lineardecodingapplications,theA* algorithmsuffersfrom a scalingproblem— theaccuracy of thebound
decreaseswith length of the path remainingto the stop state. As a consequence,an A* searchwill explore a
disproportionatelylargeamountof statespacenearthebeginningof theline thatultimatelywill not prove relevant
to thebestsolution. As wasshown recently,

�
analternative approach,theIteratedCompletePath(ICP) algorithm

first usedby KamandKopec	 in adifferentcontext, canbeextendedto thelanguagemodelingproblem.Ratherthan
usinga two passapproachin which theboundingfunction is developedentirely in thefirst pass,the ICP approach
iteratively refinestheboundnearthemostpromisingportionsof thegraph.Thisapproachwill bediscussedin detail
in Section3.3.



3.2. Search Techniques Based on Estimation

Returningto thegeneralproblemof finding thebestpathin a largegraph,thereis a classof algorithmsthatmake
useof heuristicor estimatedcomputationsto guidethesearch.Thesealgorithmsfind theshortestpathon a subset
of the graph;however, the subsetexploredis not determinedwith the rigor of the boundingalgorithmsdescribed
above. Instead,explorationis guidedby predictive estimatesof thescoresof unexploredpathsegments.

Oneextremeexampleof suchatechniqueis a“greedy”algorithm,whichgrowsasinglepathbyalwaysfollowing
a bestoutgoingedgeat eachnodeuntil the stopnodeis reached.The greedyapproachis proneto missinggood
solutionsbecauseof its inability to backtrackwhenthe pathno longer looks promising. An effective estimation-
basedsearchstrategy musthaveawayof selectively postponingwork onpartiallyexploredpathsto returnto earlier
nodesin thegraphto explorealternatedecodings.Theoppositeof thegreedyapproachis to systematicallyexplore
all of the shortpathsbeforemoving on (i.e., breadth-firstsearch),which will endup exploring the entiregraph
beforedetermininga solution. Themoreinterestingandusefulestimation-basedalgorithmslie betweenthesetwo
extremes.Oneapproachis theStackalgorithm,in which theestimatesallow partialpathsof differing lengthsto be
effectively compared.Webelieve thattheStackalgorithmis anattractive choicein theDID settingfor a numberof
reasons,andwe will discussit in detail in Section3.4.

Two otherestimation-basedstrategiesareworthmentioning:theList andBeamsearchalgorithms.In these,only
pathsof similar lengthsaredirectly compared.In thecontext of signalprocessing,thesealgorithmsarereferredto
astime-synchronous.List searchusesa simple n -bestheuristicto determinewhichpathsareexplored.All nodes�
at thesameimagepositionareprocessedtogether, andonly the n -bestnodes(accordingto t (*� . , theweightof the
pathfrom thesourceto � ) areexplored.List searchsuffersfrom theneedto carryforward n pathsateveryposition.
Wherethenoiseis low, theextrapathsareunnecessary, andwherethenoiseis high, it is likely thatthebestpathwill
be lost. Beamsearchattemptsto alleviate this problemby varyingthenumberof pathsexplored,ratherthanusing
a fixednumbern . In Beamsearch,all partialpathsscoringwithin a thresholdof thebestcurrentpartial pathare
explored.

Wehave describedtwo basicclassesof algorithmthatavoid searchingtheentiregraph.Oneusesboundson the
scoresof unexploredpathsegments,while theotherusesestimates.Wenext discuss,in detail,thebound-basedICP
algorithmappliedto DID in thepresenceof a languagemodel.Section3.4will presenta correspondingdiscussion
of theestimate-basedStackalgorithm.

3.3. Iterated Complete Path Algorithm

As mentioned,theICPalgorithminvolvesiteratively rescoringcompletepathsusinglanguagemodelsof increasing
order. We describeit herein termsof thegraphdefinedabove. More detailscanbe found in previous work.

�
To

begin our descriptionof thealgorithm,we needsomeadditionalstructurein thegraph.We introducea classof less
refinednodespxw with statesthatincludepositionin theimage,but whichhaveanincompletelinguisticcontext – that
is, a linguistic context thatis lessspecificthancanbedistinguishedby thelanguagemodel.A node� � is considered
to bea refinementof a node � if bothnodeshave thesamespatialpositionandif the incompletelinguistic context
of � canbecompletedto thecontext at � � by prependinga character. For example,a nodewith linguistic context
ABCD is a refinementof onewith context BCD, which itself is a refinementof onewith context CD, andso forth
until thereis a nodeat the samespatialpositionhaving an emptyor null linguistic context. Edgesthat originate
in p w areweightedwith context-conditionalupperboundsratherthanwith true languagemodelscores.That is,
the language-modelcomponentof the scoreassignedto suchan edgeis the logarithmof the bound Q�U definedin
Equation(4), where d is determinedby the lengthof thecontext of theoriginatingnode. The ICP algorithmthen
proceedsasfollows:

1 Thegraph o is initialized to containonly thosenodesthatcontainthenull context (theleastrefinednodes).



2 A Viterbi algorithmis usedto computeacandidatebestpath& in o .

3 Along & the nodesin p w arereplacedwith refinementnodesthat areconsistentwith the transcriptionof & .
Dependingon thelevel of refinement,thesenew nodesmaybemembersof either p or pxw .

4 Steps2 and3 arerepeateduntil the bestpath & containsonly nodesfrom p , that is, the pathis completely
refined.

So,for example,if o containsanodefrom p w thathaslinguisticcontext CD, andthenodeappearsonthecurrent
bestpath& having transcriptionABCDEF, thenanew, morerefinednodewith context BCD is addedto thegraphfor
thenext iteration.It is possibleto implemento with implicit edges,whoseweightscanbederivedfrom precomputed
languagemodelandtemplatematchscores,sothattheexpansionof thegraphin step3 simply involvesaddingmore
refinednodesalongthepath& .

At every iteration,thebestpathcomputationis on a graphthatcontainsbothexact languagemodelscores(on
edgesleaving nodesin p ) and upperboundson languagemodel scores(on edgesleaving nodesin p8w ). Paths
involving nodesin p w will only get worsewhen refined,so as soonas we encountera currentbestpath & that
containsonly nodesin p , wecanterminatethealgorithmknowing thattheremainingnodesin p�w cannotberefined
to yield abetterpath.

In principle,thereis nolimit on theamountof thegraphthattheICPalgorithmcanexplore. In practicehowever,
theICPalgorithmis ableto takeadvantageof thetendency of theimagematchscoresto dominateover thelanguage
modelscoresin theoverallpathscore.Typically, thelinguisticconstraintsexertmoreof a“tiebreaking”influenceon
thedecodingdecision.This allows it to rule out thevastmajority of poorpathsquickly, evenwhenthosepathsare
“proppedup” by therelatively looselanguage-modelboundsassociatedwith theleast-refinednodes.Convergenceis
particularlyfastin thelow-noiseregime,aswill beseenin theexperimentalresultspresentedin Section4. Whenthe
noiseincreasesbeyonda certainrange,theICP algorithmbecomeslessfeasible,but in suchcasesit canbestopped
at any time to yield a goodcurrentguess.Notethat in thehigh-noiseregime,theconnectionbetweenthebestpath
andthetruetransmittedmessagebecomestenuous,sothatit makeslittle senseto insiston finding thetruebestpath
in suchcases,particularlyif doingsocomesatahighcomputationalcost.

3.4. Stack Algorithm

Theessentialideaof theStack algorithmm � l is to provideameansof directlycomparingpathsof differing lengths,so
thatateachstepthemostpromisingpathcanbeextended.At theheartof theStackalgorithmis apriority queuethat
is usedto determinethemostpromisingpathaccordingto theformula t (*� .Gu s (*� . , where t (*� . is theactualscore
of thepartialpathfrom thesourceto � , and s (*� . is apredictionof thescoreof thebestremainingpathfrom � to the
sink. We caninterpret t (*� .0u s (*� . asbeinga measureof theoverall potentialof thepartialpathendingin node �
to becontinuedto ahigh-scoringfull path.Theform of thisexpressionis identicalto thatusedin theA* algorithm.
However, therole of s (*� . differssignificantlyfrom its role in A*, makingthealgorithmbehave very differently. In
A*, s (*� . is a strict upperboundon the scoreof the bestremainingpath,whereasin the Stackalgorithm, s (*� . is
an estimateof that score. As a result, the guaranteeprovided by A* that a true bestpathwill be found whenthe
algorithmterminatesis lost. In compensation,thereis typically a significantreductionin complexity in both the
designandrunningof thealgorithm.An estimateis usuallysimplerto defineandcomputethanabound,andits use
in placeof a boundpreventstheexplorationof many extraneouspartialpaths.

An alternative but equivalentformulationis to measurethepotentialof eachnode � asthedifferencebetweent (*� . andan expectedscore y (*� . . Here,we simplify the computationof y (*� . by makingit dependonly on spatial
position,sothat y (*� . is theexpectedscorefor ageneric“promising” nodeat thesamespatialposition.Thefunctiony (*� . canbethoughtof astilting thebest-firstsearchcomputationon t (*� . sothatit favorspathsfurtherin thegraph.
For this reason,y (*� . is referredto asa tilt function.



Clearlythechoiceof y (*� . , or equivalently s (*� . , is critical to therunningof thealgorithm.In our DID problem,
thelog-posterior-probability weightingof thegraphedges,underastationarityassumption,suggeststhat y (*� . should
grow linearly with the positionof � in the image. The slopeof y (*� . is thecrucial parameter, andmustbe chosen
carefully. Intuitively, the slopesetsan expectationfor the scoreof a pathbasedon its length. Partial pathswith
scoresthat arebetterthantheir expectedvalueaccordingto this measurearerewardedby beingexploredfurther,
while partialpathsthatareworsethanexpectedaremorelikely to beabandoned.Settingtoolow aslopesetstoolow
anexpectation,so thatanarbitrarypathcanberewardedfor simply for beinglong, effectively “locking out” other
pathsthatmaybe better. At theotherextreme,settingtoo high a slopepenalizeslength,resultingin anexplosion
of shortpathsthatmustbeconsidered.Sincelow-slopetilt functionsgenerallyallow for fastercomputations,with
lessaccurateandmore“greedy” results,thetilt functionprovidesameansof trading-off accuracy with computation
time. Weareactively exploring theproblemof adaptingthetilt functionin anautomaticway. As will beseenin the
experimentalresultsin Section4, with a goodtilt function,thestackalgorithmperformswell in boththelow noise
andhighnoiseregimes.

It is natural to ask whetherit is possibleto obtain the computationalbenefitsof estimation-basedsearching
without thestrongdependenceon a tilt function. Theoriginal motivationfor thetilt functionwasto comparepaths
of differentlengths.Wecouldorganizeoursearchsothatonly pathsof similar lengthsaredirectlycompared.This is
thebasisfor theList andBeamsearchstrategies.After someexperimentation,wehavechosento focuson theStack
algorithmratherthantheList or Beamalgorithms.Stackappearsto have lower computationcostsin thelow noise
regime(wherethereis no differencein accuracy), andcomparableaccuracy in thehigh noiseregime. In situations
wherethedeterminationof anappropriatetilt function is difficult andmoderateadditionalcomputationalcostcan
be tolerated,the ICP approachdescribedin the preceedingsectionbecomesattractive becauseit is basedonly on
relatively weakassumptionsanddoesnot requirethesettingof critical parameters.

4. EXPERIMENTAL RESULTS

WeillustratetheStackandICPalgorithmsby applyingDID to simulatedlow-resolutiongrayscaletext-line images.
Ideal text line imagesarecorruptedby spatiallowpassfiltering, subsampling,andadditive noise. Specifically, the
lowpassfilter is a separable11-tapFIR filter, the subsamplingis z|{}z , andthe noiseprocessconsistsof adding
zero-meanGaussianpseudorandomnumberswith a standarddeviation of ~ , followedby quantizationandclipping
backinto therange � � 
������#
2: O�O�� . Exampledegradedtext linesareshown for severalvaluesof ~ in Figure1. Except
for noting that ~ is a free parameter, thedetailsof thedegradationprocessandthecorrespondingtemplate-match
functionarenotmaterialto ourdiscussionof thealgorithms.

Figure 1. Exampletext line imagesfor ~ � O (top), ~ ��: O (middle), ~ � O�� (bottom).

Training and testdataare taken from an electronicversionof Lewis Carroll’s Through the LookingGlass,
���

with all charactersmappedto uppercaseandall punctuationsymbolsexceptperiods,commas,andquestionmarks
removed. Blank linesareomitted,andtheremaining3,118linesof text aredivided into two equal-sizeportions:a
trainingsegment,consistingof theeven-numberedlines,andatestportion,consistingof theodd-numberedlines. In
thissimulation,only thelanguagemodelneedsto betrained,asall othermodelsin thesystemareknown accurately
in advance. Training the languagemodelon even-numberedlines andtestingthe systemon odd-numberedlines



makesit likely that the languagemodelis both relevantandaccurate,while still preventingsevereoverfitting. The
alphabetis takento bethesetof symbolsthatactuallyappearsin theunionof thetrainingandtestdata.

Thepreprocessingstepof mappingsymbolsto uppercaseandremoving mostformsof punctuationis aholdover
from earlierwork on the ICP algorithmin which Morsecodewasusedfor signalinginsteadof imagesof printed
text.
�

Here,thepreprocessingis retainedbecauseof thecomputationalsimplicity thatresultsby severelyrestricting
thesizeof thealphabet.

A final simplificationin thepresentsimulationis theomissionof an unlabeledsingle-pixel-spacetransitionin
the Markov source. Its absencesimplifiesimplementationof the algorithms,but sacrificesa degreeof realismin
that the importantsynchronizationissuesthatnormallyarisein decodingarelargely avoided. Moreover, omitting
this transitionrequiresthatthecorrecthorizontalpositionsof thestart-andstop-nodesbespecifiedto thedecoderin
advancefor eachtext line.

Becauseof all of thesesimplifications— the severely restrictedalphabet,the known relevanceandaccuracy
of the languagemodel, the absenceof a single-pixel-spacetransition,andperfectprior knowledgeof the image
formationanddegradationmodels— DID recognitionaccuracy is muchhigher in this simulationthanwould be
expectedwereit appliedto actualscannedimagesof comparablesubjective quality. This phenomenonis illustrated
in Figure2, whereacompletelyillegiblecorruptedtext line image(a) is correctlydecodedby two of thealgorithms.
While it is largelyamatterof methodologicalpreferencewhetherto explorealgorithmicissuesin asimulatedsetting,
the simulationshouldstill be realistic,andin this respectexpandingthe alphabetandinclusionof a single-pixel-
spacetransitionwould be an important improvement. This will be taken up in future work. Nevertheless,the
presentsimulationis felt to retainenoughrealismto allow theessentialcharacteristicsof thesearchalgorithmsto be
analyzedqualitatively.

(a)

(b) CDNSIOEBINGSD YOU SEETP?IT.IJ, LIJULONT KAVE HAD ANX HAND IN

(c) CDNSIOEBINGSD YOU SEETHAT IT COULDNT HAVE HAD ANX HAND IN

(d) CONSIDERINGSOYOU SEETHAT IT COULDNT KAVE HAD ANY PAND ID

(e) CONSIDERINGSOYOU SEETHAT IT COULDNT HAVE HAD ANY HAND IN

(f) CONSIDERINGSOYOU SEETHAT IT COULDNT HAVE HAD ANY HAND IN

Figure 2. Resultof decodinga severely degradedtext line image: (a) illegible corruptedtext line ( ~ ��� ��� );
(b) Viterbi without a languagemodel; (c) Viterbi with a unigramlanguagemodel; (d) Stack-1.0(seetext for an
explanation)with a O -gram;(e) Stack-2.0with a O -gram;and(f) ICPwith a O -gram.Theapostrophein “couldn’t” is
removedin apreprocessingstep(seetext).

We now discussour simulationof the Stackalgorithm. For eachlevel ~ of noiseconsidered,the expected
slope � ( ~ . of thepathscoreasa functionof pixel positionis estimatedasthesumof a per-pixel-columnlanguage
model componentand a per-pixel-column likelihood component. The former is basedon an empirical entropy
rateobtainedby scoringthe training datawith the languagemodelandaccountingfor the variablewidths of the
characters.The latter is calculatedon the basisof the noiseprocessandthe marginal distribution of uncorrupted
pixel values.Figure3 indicatesthesensitivity of thespace-complexity of thealgorithmto thechoiceof tilt function
slope,aswell asa large differencein space-complexity for two differentlines at a fixed slopevalue,suggestinga
generallylargevariability of space-complexity from line to line for agivenslopevalue.

In theexperimentsthatcomparetheStackalgorithmto ICP andViterbi, thetilt functionis givenin termsof the
expectedslope � ( ~ . . Specifically, theslopeis setat �v� ( ~ . , where � rangesover thevalues ��� � , ��� O , and :;� � . The
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Figure 3. Space-complexity of the Stackalgorithmmeasuredin graphnodesper horizontalpixel position,asa
functionof tilt slope,for two differenttext linesbothcorruptedwith thesamenoiselevel ~ ��� O . The“ideal” slope
predictedonthebasisof empiricalentropy rateis indicatedby H. Also shown, for reference,is thespace-complexity
of thestandardViterbi algorithmon thebasicDID trellis (i.e.,without a languagemodel).

Stackalgorithmusingaparticularvalueof � is labeledStack-� in thegraphs.To preventacomputationalexplosion
for theoccasionaltext lines for which thespecifiedslopeturnsout to betoo high, a strict upperlimit of � ��
 nodes
is imposedon thesizeof thegraphfor any onetext line. Whenthat limit is exceeded,thentheslopeis reducedin
stepsof � ( ~ .��;� � until thelimit is obeyed.

ThebasicICP algorithmhasno parametersbesidesthe languagemodelitself, andits implementationdirectly
followsthedescriptiongivenin Section3.3.Wehaveequippedthealgorithmwith amechanismfor earlystoppingso
thatthebestpathfoundprior to terminationcanberecordedandreturned,but wehavenothadoccasionto useearly
stoppingin theexperimentsreportedonhere.It is mentionedbecausethiscapabilitycanbeimportantin practice.

Figures4-7 characterizethe performanceof the variousalgorithmsasa function of noiselevel on the first O��
linesof thetestdata,with theexceptionthat for ICP at ~ ��� ��� , only thefirst z : linesareused.Figure4 presents
error rates,calculatedas the minimum averageper-characternumberof substitutions,insertions,and deletions,
eachweightedequally, that mustbe performedto transformthe recognizedtext into the original. The error-rate
performanceof ICPstandsout; it is consistentlyandsignificantlybetterthantheothers.

Thecorrespondingspace-complexity of eachalgorithmasa functionof noiselevel is illustratedin Figure5. The
extremely low complexity of Stack-1.0makes it attractive in very low-noisesituations,while highernoiselevels
arelikely to requirean adaptive tilt-slope selectionprocedureto achieve goodperformancewith low complexity.
Note that the ICP algorithmgrows the trellis very little beyond what is alreadyrequiredfor Viterbi; the excessis
noticeableonly at the highestnoiselevels. The time-complexity of ICP versusViterbi is harderto gauge. ICP
requiresevaluatingat least A completepathsversusonly onefor Viterbi. This numbergrows with noiselevel as
shown in Figure6, graduallyfor typical noiselevelsandmorequickly asthelevel of corruptionbecomesextreme.
However, theadditionalpathevaluationsrequiredby ICP reusethelikelihoodcomponentof theedgescores,which
can be memoized. On the other hand, the languagemodel componentsof the scoresneedto be computedfor
eachpass,andthecostof doingsodependson thedetailsof the languagemodel. A carefulanalysisof ICP time-
complexity would involve thedetailsof how thelanguagemodelis evaluated,particularlytheboundfunctions;for
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now we simplyobserve thatthetime-complexity of eachadditionalscoringpassin ICP is variable.

For boththeViterbi andStackalgorithms,time-complexity is directlyproportionalto space-complexity. Relative
to theViterbi algorithm,theStackalgorithmsavesa factorof + � + pernodein time-complexity if weassumethecost
of scoringan edgeis thesamein bothcases,becausein Stacktheoutgoingedgesarescoredonly whena nodeis
takenoff thepriority queueandexpandedto + � + new nodes.In practice,thecostof scoringanedgeis slightly higher
in Stackthanin Viterbi becauseof thepresenceof alanguagemodel,andadetailedanalysisof time-complexity (not
attemptedhere)wouldhave to take thisdifferenceinto account.
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Finally, Figure7 characterizesthe performanceof the algorithmsin termsof what they areactually trying to
optimize: theaveragepathscore(shown relative to thescoreof groundtruth,andnormalizedby pathlength).Note
thatICPscoresslightly betterthangroundtruthat thehighestnoiselevel. This is becauseatsuchahighnoiselevel,
ground-truthceasesto be a highest-scorepath. Had a sufficiently steeptilt function beenusedwith Stack,it too
wouldhave foundahighest-scorepath.
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5. CONCLUSION

We have discussedtheproblemof integratingsoft linguistic constraintsdirectly into thebest-pathsearchprocedure
in DocumentImageDecoding,andhave identifiedandcomparedtwo algorithmsfor this purpose.Thefirst is the
ICP algorithm, a bound-basediterative techniquethat is guaranteedto yield a truly bestpath but which can be
computationallyexpensive in situationswherethedocumentimagehasbeenseverelycorrupted.Thesecondis the
Stackalgorithm,an estimation-basedtechniquewhich is computationallyattractive but which doesnot guarantee
thata pathwith thehighestscorewill be found. An additionaldifferenceis that theStackalgorithmrequiresthat
a tilt function be specified,and the functioning of Stackdependscritically on it. The basic ICP algorithm has
no parametersasidefrom the languagemodel itself, but it doesrequirethat the languagemodelbe amenableto
computingboundingfunctionsof aparticularform. Wehave alsoobservedthattheICP algorithmcanbeemployed
asanapproximatealgorithmvia earlystopping,thoughwehavenotexploredthataspectin detail.Theexperimental
resultspresentedwere basedon a simplified simulationof DID which useda restrictedalphabetand in which
no provision wasmadefor fine variablespacingbetweencharactertemplates.Removing thesesimplificationsto
improve realismin furthersimulationsis thesubjectof ongoingwork.
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