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ABSTRACT

Beginning with an obsered documenimageanda modelof how theimagehasbeendegraded,Documentimage
Decodingrecognizeprintedtext by attemptingto find a mostprobablepaththrougha hypothesizedlarkov source.
The incorporationof linguistic constraintswhich are expressediy a sequentiapredictive probabilisticlanguage
model,canimprove recognitionaccurag significantlyin the caseof moderatelyto seserely corrupteddocuments.
Two methodsof incorporatinglinguistic constraintsn the best-pathsearcharedescribedanalyzedand compared.
Thefirst, calledtheiteratedcompletepathalgorithm,involvesiteratively rescoringcompletepathsusingconditional
languagemodelprobability distributionsof increasingorder expandingstateonly asnecessaryvith eachiteration.

A propertyof this approachs thatit resultsin a solutionthatis exactly optimalwith respecto the specifiedsource,
degradation,and languagemodels;no approximationis necessaty The secondapproachconsidereds the Stadk

algorithm, which is often usedin speectrecognitionandin the decodingof corvolutional codes. Experimental
resultsarepresentedn which text line imagesthathave beencorruptedin a knowvn way arerecognizedisingboth

the ICP and Stackalgorithms. This controlledexperimentalsettingpreseres mary of the essentiafeaturesand

challenge®f realtext line decodingwhile highlightingtheimportantalgorithmicissues.

Keywords: DocumentimageDecoding,optical characterecognition,lexical languagemodeling,hiddenMarkov
models.dynamicprogrammingViterbi algorithm,stackalgorithm,list decodingcorvolutional decoding

1. INTRODUCTION

DocumentimageDecoding(DID)!? is a methodof text recognitionin documentimagesthatis basedon a com-
municationssystemsview of the documentcomposition,printing, degradation,and scanningprocesses Among
the advantagesf DID arehigh recognitionaccurag in situationswhereextensve customizatioris allowable,the
ability to recognizesomehigherlevel structurealongwith thetext, andtheability to extendandimprove thesystem
within a consistenprobabilisticframeavork. Surprisingly in mostof thework on DID reporteduntil now, the high
recognitionaccurag hasbeenachiezed despitea lack of ary prior specificationof which recognizedstringsare
linguistically valid andwhich arenot.

Recentlyatechniqudor incorporatindinguistic constraintsnto DID wasproposedndpartially exploredusing
a simulated,one-dimensionaMorse-codesignalingschemehaving known corruptionparameter$. While useful
in illustrating the functioning of the proposedalgorithm, that treatmentdid not placethe techniquein suficient
perspectie to drawv conclusionsaboutit. In this paper we examinethat techniquemore closely and compareit
with the Stak algorithm,which is a standardwidely usedalternatve. In addition,we replacethe one-dimensional
Morse-codesettingwith oneinvolving synthetictwo-dimensionatext-line images.For methodologicateasonsye
continueto exercisetight control over the mannerin which the imagesare producedandcorrupted.Nevertheless,
working on two-dimensionaimagesof printedtext improves both the realismandthe relevanceof the resulting
comparisorandanalysisover the previous experimentaframework.
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1.1. Document I mage Decoding

We briefly review the essentiaklementsof traditional Documentimage Decoding. For details,the readeris re-
ferredto KopecandChou? In the DID framework, documenimagesare regardedas having beenproducedby
transitioningthrougha Markov sourcewhich is a probabilisticfinite-statemachine.The sourcebeginsin a special
start stateandterminatesn a specialstopstate.Eachtransitionwithin the sourcecausesheimagingof a character
template(a bitmap)onthepageata currentcursorlocation,thenadwanceghatlocationby atwo-dimensionavector
displacemenin preparatiorfor printing the next character The setof charactetemplatesncludeswhitespaceof
variouskinds. Formally, eachtransitionin the sourceis assigned four-tuple consistingof a charactetemplate the
two-dimensionatisplacemeniby which to advancethe cursor the prior probability of following thattransition,and
astringlabel. Notethatthenotionof prior probabilityhereis quitelimited; for instanceijt doesnottake into account
what previous transitionsmight have occurredon the samepaththroughthe Markov source.Every completepath
throughthe sourcedefinesa documenimageandanassociatedranscription:theimageis the unionof the bitmaps
imagedon eachtransition,andthetranscriptionis theconcatenatioonf theassociatedtringlabels.It shouldbenoted
thatmorethanonecompletepaththroughthe sourcemay give riseto the sameimageand/orthe sametranscription.

After the documenimagehasbeenformedin this way, it is assumedo be subjectedo someform of random
corruption,which is the causeof someuncertaintyin the recognitionprocess. Recognitionproceedsy finding
a completepaththroughthe hypothesizedMarkov sourcethat “best” explainsthe obsered image. Specifically
a completepathis soughtthatis mostprobableconsideringthe entireimageas evidence,wherethe probability is
computednthebasisof theprior probabilitiesof thetransitionsthelik elihoodsof theassociateémagediemplates,
andthe randomcorruptionprocess Becausanultiple pathscancorrespondo the sametranscription choosingthe
most probablecompletepathis not the sameas choosingthe most probabletranscription. The probability of a
transcriptionis properly calculatedby summingthe probabilitiesof all of the completepathsthat are consistent
with thattranscription Neverthelessexperiencenasshavn thatchoosinga messageavith thegreatestomplete-path
probability is usuallya goodapproximatiornto choosingthe messagevith the highestposteriorprobability; this is
known asthe Viterbi apptoximationto the maximuma posteriori probability (MAP) decisionrule. We usethis
approximatiorthroughout.Thus,givenanobsened documenimage therecognitiontaskreducego findinga MAP
paththroughthe Markov source Traditionally dynamicprogramming hasbeenusedfor this task.

1.2. Separable Markov Sources and Text Line Decoding

In the generalDID setting,groupsof statesin the Markov sourcecorrespondo distinct regions of the document
image,which expressesheview thatdifferentgeneratie modelsareappropriatdor regionsof differenttypes. For
example,in a Markov sourcefor the first pageof a two-columnpaper one group of statesmight correspondo
thetitle line, anotherto the abstractblock, andanotherto the left text column, etc. The mostbasictype of group
is thatfor a text column. Text columnscanbe modeledby a two-level Markov sourcestructurein which the top
level characterizesand accountdor the vertical placemenbf lines of text, andthe bottomlevel accountdor the
formation of the text lines themseles® A Markov sourcefitting this descriptionis termedsepaable Because
linguistic constraintsbearmost strongly on recognitionwithin text lines, we focus our attentionthereinsteadof
on more generaltwo-dimensionaktructures. The recognitionproblemthus becomeghat of finding a MAP path
throughthelower-level text-line subsourcdor a givenobseredtext line image.

In the absencef ary linguistic constraintsa suitablesubsourcenodelfor a text line consistsof a startstate,
a singleinterior state,anda stop state. The interior statehasone self-transitionfor eachcharactetemplatein the
font. Generatiorof atext line beginsin the startstate with the cursorat a predeterminedhorizontalpositionin the
text-line image. Thefirst transitionis into theinterior state andsubsequerttansitiondoop backinto thatstate each
time imaginga charactelandadwancingthe cursorhorizontally After thetext line hasthusbeenproduceda final
transitionis madeinto the stopstate whereuporthe procesgerminatesTypically, the cursorpositionsspecifiedfor
the startandstopstatesaretheleft- andright-mostprintablepixel locationsin theimage,respectiely. A complete



paththroughthis subsourceanbecorvenientlyrepresentebly atrellis diagramwhereinnodesepresenhorizontal
pixel locationsalongthe baseline and directededgesrepresenthe possibletransitionsthat connectthe nodes. A
completepathis obtainedby following a sequencef edgesfrom the startnodeto the stopnode. Eachedgeis
labeledwith a scorethat canbe interpretedas a posteriorprobability: the productof the prior probability of the
transitionandthe likelihood of the correspondingmagedtemplatein the spatiallocationthatthe edgespans.lt is
corvenientto representhesescoresaslogarithms.In ourdiscussiorof varioussearchalgorithmswe will generalize
thetrellis graphstructureconsiderablyin Section3. As mentionedjn the absencef linguistic constraintsfinding
the highest-scorgath canbe accomplishedy a straightforvard applicationof dynamicprogramming.Dynamic
programmingpn atrellis weightedwith log likelihoodsis oftenreferredto asthe Viterbi algorithm® andwe will so
refertoit here.

2. SOFT LINGUISTIC CONSTRAINTS

As describedabore, DID makes no useof prior knowledge aboutwhich recognizedranscriptionsare morelin-
guistically valid thanothers. It is desirablefor the purposeof reducingerror rateto provide DID with a meansof
preferringlinguistically valid transcriptiongover lessvalid ones.

DID choosedhe transcriptionthat correspondso a paththat hasthe highestposteriorprobability wherethat
probability is computedas the sum, over all transitionsalong the path, of the sum of the log likelihood of that
transitionandan unconditionalog prior probability of makingthattransition. A naturalway of expressinga prior
preferencefor transcriptionsthat are deemedvalid is to make the prior probabilitiesattachedto eachtransition
dependon which transitionswerefollowed previously alongthe path. Assigningtheseprobabilitiesis the function
of alanguage mode] whichis discusseaext. However, makingtheprior probabilitydependnarything besideghe
identity of theoriginatingnodeis aviolation of the Markov assumptionandgreatlycomplicateghesearctproblem.
Discussiorof best-pattsearchin the presencef alanguaganodelis takenup in detailin Section3.

2.1. Probabilistic Language M odel

Linguistic validity can be measuredy meansof a probabilisticlanguagemodel, which in its full generalityis
a probability distribution over all finite sequencesver the alphabetof string labelsattachedo transitionsin the
Markov source. Usually the string labelson the transitionsare single characters.Hence,for simplicity, we will
referto thestringlabelsattachedo thetransitionsascharacters, andto sequencesf thestringlabelsasstrings For
usein DID we restrictthelanguagemodelto befactorableasa sequencef probability distributionsover individual
characterseachconditionedon a subsetof precedingcharacters.Theseconditionalprobabilitiesthenreplacethe
unconditionalprior probabilitieson the transitionsin the original DID formulation. Let the alphabete A, andlet
v1,...,v, denoteastringwith v; € A,i = 1,...,n. Let 7 beaterminationsymbol,andlet A’ = AU {7}. We
view stringsashaving beenformedby the following process.Characteraregeneratedequentiallyaccordingto a
sequencef conditionalprobability distributions

pi(vilvt, ..., vim1) = pi(vi|di(vr, ..., vi-1)) (1)

where wv; € A, v1,...,v;1 € A1 =1,2,..., andthefunction;(v1, . .., v; 1) mapscontets into equvalence
classesThe string terminatesvhenthe symbolr is generatedin termsof the Markov sourcethis correspondso a
transitioninto the stopstate.

For simplicity, we remove thedependencef p in (1) oni, andrestrictg;(v1, . . . ,v;—1) to beof theform

. oy ) (e vin) ifi <N
¢’L('U1a .. ,'szl) - { (IU'ifN—Fla . aIU'L'fl) otherwise (2)



for a fixed small integer N. With theserestrictions,(1) is referredto as a character N-gram language mode)
hereinaftereferredto simply asan N-grammodel:

pi(vilv, - .-, vic1) = P(VilVi—Ny+1,- - - Vie1) (3)

whereN; = min{i, N}. Althoughthe searchtechniquego be consideredn Section3 will remainpracticalwhen
a classof languagemodelsmore generalthan N-gramsis used, N-gramsare simple and effective in capturing
importantstatisticalregularity in naturallanguagestrings.We thereforeadopttheir usehere.To illustratethe ability
of the N-gramto modelEnglish,we exhibit a pseudorandorstringthatwasobtainedoy sequentiallysamplingfrom
a5-grammodeltrainedon the Brown corpus:

And fine alone other Itality and agains she tunor his result, from
of Brannot faculous shall precentative inter at lear time to nuch a
rel anguages proposal ? Baer fall over Open-negaw of nbst used agreen
during represearchbi shes of chlor] But the first position alittle
rear intenant year-olds to And also if we should beef childing face
gr aduat es

Theimplementatiorandtrainingof the V-grammodelusedin this studyareaswerereportedn theprevious“Morse
code”paper®

2.2. Auxiliary Upper Bound Functions

In additionto theconditionalprobabilitiesprovidedby (3), oneof thesearchechniqueso beconsideredn Section3
requiresthat a setof upperboundfunctionsof a particularform be definedon the probabilitiesin additionto the
probabilitiesthemseles. We describehemnow, althoughtheir purposewill notbefully clearuntil Section3.3. For
afixed N-gram,we definea sequencef auxiliary functionsgy, . . ., gn,—1 as

qk(vi|vi,k,...,vi_1) :'ui N+Ifl,a,),(vi . lp('Ui|'Uz'—Ni+17---,'Uz'—1) (4)
—Nj+1ssVimf—

which for eachk provides an upperboundon the probability that can be assignedby the N-gramto v; when

immediatelyprecededy (v;_g, - . .,v;_1). Forexample g specifiethe maximumprobabilitythatcanbeassigned
by the modelto v; in any contet, while atthe otherextreme,gy _1 is simply anothemamefor p. Notethatfor ary
fixedstringsection(v;—n;+1, - - - , v:), g IS Nonincreasingn k. Notefurtherthatfor sufficiently large NV, go will be

closeto 1 for every characterThis is becausevery characterno matterhow infrequentin absoluteerms,becomes
nearlycertainin somecontect. As k increasesthe boundtightens.

3. BEST-PATH SEARCH IN THE PRESENCE OF A LANGUAGE MODEL

The introductionof even a modestlycomple languagemodel (e.g. N = 4) immediatelycreatescomputational
challengedor the decodingalgorithm. The Viterbi approactcannotbe extendedin the obviousway (i.e., by tak-
ing advantageof the N-grams limited memoryto conductthe searchin an expandedrellis in which the Markov
assumptionis onceagainobeyed), becausehe statespacefor the searchproblemnow includesbothimageinfor-
mationandlanguagemodelinformation,andsothe sizeof the statespacehasincreasedignificantly For example,
whenN = 4, the statespacegrons from W to W|.A|3, whereW is thewidth in pixels of the text-line image,and
|A| is the alphabetize. We mustthereforeconsideralgorithmsthatdo not explore the entire statespace Herewe
benefitfrom algorithmictechniquesrom relateddomains:corvolutional coding® speeclprocessing, andartificial
intelligence? thatcanbe adaptedo DID.

While languagemodelingis helpful in reducingerrors,in DID theimagenormally hasmoreinfluencethanthe
languagemodelin determiningthe bestdecoding. Accordingly oneapproachis to factorthe problem,solvingit



first with templatematchingwithout a languagemodel,generatinghe K -bestsolutions,andthenrescoringthese
solutionswith the languagemodelto obtainthe bestsolution!® While the computationof the K -bestsolutionsis

feasiblefor small K, experienceshavs that K mustbe very large (on the orderof 500for an averagetext line) to

includethe bestsolution!! It appearghat several short,independensectionsof ambiguityin a line of text, each
with only afew nearlyequialentdecodingscancombineto createa large numberof nearlyequivalentdecodings
for the entireline. To be both efficient and effective, the languaganodelmustbe moretightly integratedwith the

best-pattsearchalgorithmthanis achiezed by K-bestrescoring.

Prior to statingthe two specificalgorithmsto be compared,we will setthe stageby identifying two broad
catgyoriesof searchalgorithms:bound-basedechniqueghatfind the bestsolutionby guaranteeinghat the states
omittedby the searchcannotbe partof the bestsolution,andestimation-basetechniqueghatfocusthe searchon
the mostrelevant portionsof the statespace.

3.1. Search Techniques Based on Bounding

Discussionis simplified if we abstractthe problemto a graph-theoreticsetting. Considera directedgraphG =
(V, E), wherethe nodesV correspondo stateswhich in our caseconsistof positionsin the imageand context
relevantto thelanguagemodel,andthe edgesE correspondo transitions.Incorporationof positionaspartof the
state, andtherequirementhateachtemplatehave nonzerowidth, ensurethatthe graphhasno cycles. In amanner
analogougo the scoringof edgesn thetrellis describedn Sectionl.2,theedgesE aresuchthateachis associated
with a charactetemplateandis weightedwith a scorethatis the sum of two componentsthe log likelihood of
matchingthe characterat the imageposition associatedvith the originating node,andthe log of the conditional
probability (3) returnedby the languagemodelwhen suppliedwith the contet specifiedby the originating node.
Theuseof conditionalratherthanunconditionalanguagenodelprobabilitiesdistinguisheshis graphfrom thegraph
developedin Sectionl.2. The bestdecodingis takento bethe largest-weightpaththroughthis graph. If the graph
were small enoughtherewould be mary differentalgorithmsthat could be usedto find the bestpath— dynamic
programminghasalreadybeenmentioned For large graphs a popularboundingtechniquethe A* algorithm? uses
afunctionh(v) whichis easilycomputedandwhich givesanupperboundon the bestpossiblepathfrom anodew
to thestopstate.The searchthenproceeddy iteratively exploring theedgesE leaving the mostpromisingstate as
measuredy the functiong(v) + h(v), whereg(v) is the actualpartial pathscorefrom sourceto v, andh(v) is an
upperboundon the weight of arny pathfrom v to the stopstate. Eventhoughit doesnot explore thewhole graph,
the A* algorithmfindsthe bestsolution,becausavhenthe searclreacheshe stopstate all unexplorednodeshave
lower g(v) + h(v) thanthestopstate,andsothey cannotbe partof the bestsolution.

Thesucces®f the A* algorithmdepend®ntirelyon theboundingfunctionh(v). Easilycomputedandaccurate
boundsh(v) leadto very efficient algorithms. A* approachesave beenusedin speechprocessing, whereh(v)
canbecreateddy afirst (backward) passof the algorithmwith eitherno languagenodelor alanguagenodelthatis
smallenoughto allow for a Viterbi computatiorof the bestpossibleinterpretatiorof theremainderof thesignal. A
secondforward) passhenusesan A* algorithmwith aboundingfunctionthatis basecdn thefirst pass.

For lineardecodingapplicationsthe A* algorithmsuffersfrom a scalingproblem— the accurag of the bound
decreasesvith length of the path remainingto the stop state. As a consequencean A* searchwill explore a
disproportionatelyarge amountof statespacenearthe beginning of the line thatultimately will not prove relevant
to the bestsolution. As wasshavn recently? analternatve approachthe IteratedCompletePath (ICP) algorithm
first usedby KamandKope¢ in adifferentcontet, canbeextendedo thelanguagemodelingproblem.Ratherthan
usingatwo passapproachn which the boundingfunctionis developedentirelyin the first passthe ICP approach
iteratively refinesthe boundnearthe mostpromisingportionsof thegraph.This approachwill bediscussedh detail
in Section3.3.



3.2. Search Techniques Based on Estimation

Returningto the generalproblemof finding the bestpathin a large graph,thereis a classof algorithmsthat make
useof heuristicor estimateccomputationgo guidethe search.Thesealgorithmsfind the shortesipathon a subset
of the graph;however, the subsetexploredis not determinedwith the rigor of the boundingalgorithmsdescribed
above. Instead explorationis guidedby predictive estimate®f the scoref unexploredpathsegments.

Oneextremeexampleof suchatechniques a“greedy”algorithm,which grows asinglepathby alwaysfollowing
a bestoutgoingedgeat eachnodeuntil the stopnodeis reached.The greedyapproachs proneto missinggood
solutionsbecausef its inability to backtrackwhenthe pathno longerlooks promising. An effective estimation-
basedsearclstratggy musthave away of selectvely postponingvork on partially exploredpathsto returnto earlier
nodesin the graphto explore alternatedecodings.The oppositeof the greedyapproachs to systematicallyexplore
all of the shortpathsbeforemoving on (i.e., breadth-firstsearch),which will endup exploring the entire graph
beforedetermininga solution. The moreinterestingand usefulestimation-basedlgorithmslie betweenthesetwo
extremes.Oneapproachis the Stackalgorithm,in which the estimatesllow partial pathsof differing lengthsto be
effectively comparedWe believe thatthe Stackalgorithmis anattractive choicein the DID settingfor a numberof
reasonsandwe will discusst in detailin Section3.4.

Two otherestimation-basestratgiesareworth mentioning:the ListandBeamsearchalgorithms.In thesepnly
pathsof similar lengthsaredirectly compared.n the context of signalprocessingthesealgorithmsarereferredto
astime-synbronous.List searchusesa simple K -bestheuristicto determinewhich pathsareexplored. All nodesv
atthe sameimagepositionareprocessedogetherandonly the K -bestnodes(accordingto g(v), the weightof the
pathfrom the sourceto v) areexplored.List searchsuffersfrom theneedto carryforward K pathsatevery position.
Wherethenoiseis low, theextra pathsareunnecessarandwherethenoiseis high, it is likely thatthe bestpathwill
belost. Beamsearchattemptgo alleviate this problemby varying the numberof pathsexplored,ratherthanusing
afixednumberK. In Beamsearchall partial pathsscoringwithin a thresholdof the bestcurrentpartial pathare
explored.

We have describedwo basicclasse®f algorithmthatavoid searchingheentiregraph.Oneusesboundson the
scoreof unexploredpathsegmentswhile the otherusesestimatesWe next discussjn detail,the bound-basetCP
algorithmappliedto DID in the presencef alanguagemodel. Section3.4 will present correspondingliscussion
of the estimate-basefitackalgorithm.

3.3. Iterated Complete Path Algorithm

As mentionedthe ICP algorithminvolvesiteratively rescoringcompletepathsusinglanguagemodelsof increasing
order We describeit herein termsof the graphdefinedabore. More detailscanbe foundin previouswork3 To
begin our descriptionof the algorithm,we needsomeadditionalstructurein the graph.We introducea classof less
refinednodesV* with stateghatincludepositionin theimage but which have anincompletdinguistic context — that
is, alinguistic context thatis lessspecificthancanbedistinguishedy thelanguageanodel. A nodev’ is considered
to bearefinemenbof a nodew if both nodeshave the samespatialpositionandif the incompletelinguistic context
of v canbe completedto the contet at v’ by prependinga character For example,a nodewith linguistic context
ABCD is a refinementof onewith context BCD, which itself is a refinementof onewith contet CD, and so forth
until thereis a nodeat the samespatialposition having an empty or null linguistic context. Edgesthat originate
in V* areweightedwith contet-conditionalupperboundsratherthanwith true languagemodelscores. Thatis,
the language-modetomponenbf the scoreassignedo suchan edgeis the logarithmof the boundg, definedin
Equation(4), wherek is determinedby the lengthof the context of the originatingnode. The ICP algorithmthen
proceedssfollows:

1 ThegraphG is initialized to containonly thosenodesthatcontainthe null contet (theleastrefinednodes).



2 A Viterbi algorithmis usedto computea candidateébestpathp in G.

3 Along p the nodesin V* arereplacedwith refinementiodesthat are consistenwith the transcriptionof p.
Dependingon thelevel of refinementthesenew nodesmaybe memberof eitherV or V>,

4 Steps2 and3 arerepeateduntil the bestpathp containsonly nodesfrom V, thatis, the pathis completely
refined.

So,for example,if G containsanodefrom V* thathaslinguistic context CD, andthenodeappear®nthecurrent
bestpathp having transcriptionABCDEF, thena new, morerefinednodewith context BCD is addedto the graphfor
thenext iteration. It is possibleio implementG with implicit edgeswhoseweightscanbederivedfrom precomputed
languagemodelandtemplatematchscoressothatthe expansiorof thegraphin step3 simplyinvolvesaddingmore
refinednodesalongthe pathp.

At every iteration, the bestpathcomputationis on a graphthat containsboth exactlanguagemodelscoregon
edgesleaving nodesin V) and upperboundson languagemodel scores(on edgesleaving nodesin V*). Paths
involving nodesin V* will only get worsewhen refined,so as soonaswe encountera currentbestpath p that
containsonly nodesn V', we canterminatethealgorithmknowing thattheremainingnodesn V* cannotberefined
toyield a betterpath.

In principle,thereis nolimit ontheamountof thegraphthatthe ICP algorithmcanexplore. In practicehowever,
thelCP algorithmis ableto take advantageof thetendeng of theimagematchscoreso dominateoverthelanguage
modelscoredn theoverall pathscore.Typically, thelinguistic constraintsexert moreof a“tiebreaking”influenceon
the decodingdecision.This allows it to rule out the vastmajority of poorpathsquickly, evenwhenthosepathsare
“proppedup” by therelatively looselanguage-modddoundsassociatewvith theleast-refinedhodes.Corvemgenceis
particularlyfastin thelow-noiseregime,aswill beseenn theexperimentakesultspresentedh Sectiord. Whenthe
noiseincreasedeyonda certainrange the ICP algorithmbecomedessfeasible but in suchcasest canbe stopped
atary timeto yield a goodcurrentguess.Note thatin the high-noiseregime, the connectiorbetweerthe bestpath
andthetruetransmittedmessagbecomedenuoussothatit makeslittle senseo insiston finding thetrue bestpath
in suchcasesparticularlyif doingsocomesata high computationatost.

3.4. Stack Algorithm

Theessentialdeaof the Stadk algorithn?? is to provide ameansf directly comparingpathsof differing lengths so
thatateachstepthemostpromisingpathcanbe extended.At the heartof the Stackalgorithmis a priority queuethat
is usedto determinethe mostpromisingpathaccordingto the formulag(v) + h(v), whereg(v) is the actualscore
of the partialpathfrom the sourceto v, andh(v) is a predictionof the scoreof the bestremainingpathfrom v to the
sink. We caninterpretg(v) + h(v) asbeinga measuref the overall potentialof the partial pathendingin nodev

to be continuedo a high-scoringfull path. Theform of this expressioris identicalto thatusedin the A* algorithm.
However, therole of h(v) differssignificantlyfrom its role in A*, makingthealgorithmbehae very differently In

A*, h(v) is astrict upperboundon the scoreof the bestremainingpath,whereasn the Stackalgorithm, a(v) is

an estimateof that score. As aresult, the guarantegrovided by A* thata true bestpathwill be found whenthe
algorithmterminateds lost. In compensationthereis typically a significantreductionin complity in both the
designandrunningof thealgorithm.An estimatds usuallysimplerto defineandcomputethana bound,andits use
in placeof aboundpreventsthe explorationof mary extraneougartial paths.

An alternatve but equivalentformulationis to measurdahe potentialof eachnodev asthe differencebetween
g(v) andan expectedscoret(v). Here,we simplify the computationof ¢(v) by makingit dependonly on spatial
position,sothatt(v) is theexpectedscorefor ageneric‘promising” nodeat the samespatialposition. The function
t(v) canbethoughtof astilting the best-firstsearchcomputatioron g(v) sothatit favors pathsfurtherin thegraph.
For thisreasont(v) is referredto asatilt function



Clearlythe choiceof ¢(v), or equivalently h(v), is critical to the runningof thealgorithm.In our DID problem,
thelog-posteriomprobaility weightingof thegraphedgesunderastationarityassumptionsuggestshatt(v) should
grow linearly with the positionof v in theimage. The slopeof #(v) is the crucial parameterand mustbe chosen
carefully Intuitively, the slopesetsan expectationfor the scoreof a pathbasedon its length. Partial pathswith
scoresthat are betterthantheir expectedvalue accordingto this measureare revardedby beingexploredfurther,
while partialpathsthatareworsethanexpectedaremorelik ely to be abandonedSettingtoo low aslopesetstoo low
an expectation,sothatan arbitrarypathcanbe rewardedfor simply for beinglong, effectively “locking out” other
pathsthatmay be better At the otherextreme,settingtoo high a slopepenalizedength,resultingin an explosion
of shortpathsthatmustbe considered Sincelow-slopetilt functionsgenerallyallow for fastercomputationsyith
lessaccurateandmore“greedy” results thetilt functionprovidesameansof trading-of accurag with computation
time. We areactively exploring the problemof adaptingthetilt functionin anautomatiovay. As will beseenin the
experimentalesultsin Sectiond, with a goodtilt function,the stackalgorithmperformswell in boththe low noise
andhigh noiseregimes.

It is naturalto ask whetherit is possibleto obtain the computationabenefitsof estimation-basedearching
without the strongdependencen atilt function. The original motivationfor thetilt functionwasto comparepaths
of differentlengths.We couldorganizeour searchsothatonly pathsof similarlengthsaredirectly comparedThisis
thebasisfor the ListandBeamsearchstratgies. After someexperimentationwe have choserto focusonthe Stack
algorithmratherthanthe List or Beamalgorithms.Stackappearso have lower computationcostsin the low noise
regime (wherethereis no differencein accurag), andcomparableaccurag in the high noiseregime. In situations
wherethe determinatiorof anappropriatdilt functionis difficult andmoderateadditionalcomputationatostcan
be tolerated the ICP approachdescribedn the preceedingsectionbecomesttractive becauset is basedonly on
relatively weakassumptionanddoesnot requirethe settingof critical parameters.

4. EXPERIMENTAL RESULTS

Weillustratethe StackandICP algorithmsby applyingDID to simulatedow-resolutiongrayscaldext-line images.
Idealtext line imagesare corruptedby spatiallowpassfiltering, subsamplingandadditive noise. Specifically the
lowpassfilter is a separablel1-tapFIR filter, the subsamplings 3 x 3, andthe noiseprocessconsistsof adding
zero-mearGaussiarpseudorandomumberswith a standardleviation of o, followed by quantizatiorandclipping
backinto therange[0, . . . , 255]. Exampledegradedtext linesareshawvn for severalvaluesof o in Figurel. Except
for notingthat o is a free parameterthe detailsof the degradationprocessandthe correspondindemplate-match
functionarenot materialto our discussiorof the algorithms.

Figure 1. Exampletext line imagesfor o = 5 (top),c = 25 (middle),c = 50 (bottom).

Training and testdataare taken from an electronicversionof Lewis Carroll's Throughthe Looking Glass'?
with all charactersnappedo uppercaseandall punctuatiorsymbolsexceptperiods,commasandquestionmarks
removed. Blank lines areomitted,andthe remaining3,118lines of text aredividedinto two equal-sizeportions:a
trainingsegment,consistingof the even-numberedines,andatestportion,consistingof the odd-numberedines. In
this simulation,only thelanguaganodelneedgo betrained,asall othermodelsin the systemareknown accurately
in advance. Training the languagemodelon even-numberedines andtestingthe systemon odd-numberedines



makesit likely thatthe languagaemodelis both relevantandaccuratewhile still preventingserere overfitting. The
alphabeis takento bethe setof symbolsthatactuallyappearsn theunionof thetrainingandtestdata.

Thepreprocessingtepof mappingsymbolsto uppercasendremaoving mostformsof punctuatioris aholdover
from earlierwork on the ICP algorithmin which Morse codewasusedfor signalinginsteadof imagesof printed
text.? Here,the preprocessingg retainedoecausef the computationasimplicity thatresultsby severelyrestricting
thesizeof thealphabet.

A final simplificationin the presentsimulationis the omissionof an unlabeledsingle-pixel-spaceransitionin
the Markov source. Its absencesimplifiesimplementatiorof the algorithms,but sacrificesa degreeof realismin
thatthe importantsynchronizatiorissuesthat normally arisein decodingarelargely avoided. Moreover, omitting
thistransitionrequireghatthe correcthorizontalpositionsof the start-andstop-node®e specifiedto the decodein
adwancefor eachtext line.

Becauseof all of thesesimplifications— the severely restrictedalphabetthe known relevanceand accurag
of the languagemodel, the absenceof a single-pixel-spacetransition,and perfectprior knowledge of the image
formationand degradationmodels— DID recognitionaccurag is much higherin this simulationthanwould be
expectedwereit appliedto actualscannedmagesof comparablesubjectve quality. This phenomenois illustrated
in Figure2, wherea completelyillegible corruptedext line image(a) is correctlydecodedy two of thealgorithms.
While it is largely amatterof methodologicapreferencevhetherto explorealgorithmicissuesn asimulatedsetting,
the simulationshouldstill be realistic,andin this respectexpandingthe alphabetandinclusion of a single-piel-
spacetransitionwould be an importantimprovement. This will be taken up in future work. Neverthelessthe
presensimulationis felt to retainenougtrealismto allow the essentiatharacteristicef the searchalgorithmsto be
analyzedqualitatively.

(a)

(b) | CDNSIOEBINGSD YOU SEETP?ITIJ, LIJULONT KAVE HAD ANX HAND IN |
(c) |__CDNSIOEBINGSD YOU SEETHAT IT COULDNT HAVE HAD ANX HAND IN ]
(d) | CONSIDERINGSOYOU SEETHAT IT COULDNT KAVE HAD ANY PAND ID |
() | CONSIDERINGSOYOU SEETHAT IT COULDNT HAVE HAD ANY HAND IN |
(f) | CONSIDERINGSOYOU SEETHAT IT COULDNT HAVE HAD ANY HAND IN ]

Figure 2. Resultof decodinga severely degradedtext line image: (a) illegible corruptedtext line (¢ = 100);
(b) Viterbi without a languagemodel; (¢) Viterbi with a unigramlanguagemodel; (d) Stack-1.0(seetext for an
explanation)with a 5-gram;(e) Stack-2.0with a 5-gram;and(f) ICP with a5-gram. Theapostrophén “couldn’t” is
removedin apreprocessingtep(seetext).

We now discussour simulationof the Stackalgorithm. For eachlevel o of noise consideredthe expected
slopeH (o) of the pathscoreasa functionof pixel positionis estimatedasthe sumof a perpixel-columnlanguage
model componentand a perpixel-columnlikelihood component. The former is basedon an empirical entrogy
rate obtainedby scoringthe training datawith the languagemodelandaccountingfor the variablewidths of the
characters.The latter is calculatedon the basisof the noiseprocessandthe mamginal distribution of uncorrupted
pixel values.Figure3 indicatesthe sensitvity of thespace-compldty of thealgorithmto the choiceof tilt function
slope,aswell asa large differencein space-compiaty for two differentlines at a fixed slopevalue, suggestinga
generallylarge variability of space-compiaty from line to line for agivenslopevalue.

In the experimentghatcomparethe Stackalgorithmto ICP andViterbi, thetilt functionis givenin termsof the
expectedslopeH (o). Specifically theslopeis setat « H (o), wherea rangesover thevaluesl.0, 1.5, and2.0. The



Effect of Tilt Function on Stack Algorithm Space Complexity
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Figure 3. Space-complgty of the Stackalgorithm measuredn graphnodesper horizontal pixel position, asa
functionof tilt slope,for two differenttext linesbothcorruptedwith the samenoiselevel o = 75. The“ideal” slope
predictedonthebasisof empiricalentrogy rateis indicatedby H. Also shavn, for referenceis thespace-compiaty

of the standardviterbi algorithmon the basicDID trellis (i.e., without alanguagemodel).

Stackalgorithmusinga particularvalueof « is labeledStad-« in the graphs.To preventa computationaéxplosion
for the occasionatext lines for which the specifiedslopeturnsout to be too high, a strict upperlimit of 106 nodes
is imposedon the sizeof the graphfor ary onetext line. Whenthatlimit is exceededthenthe slopeis reducedn

stepsof H(o)/10 until thelimit is obeyed.

The basiclCP algorithmhasno parameterdesideghe languagemodelitself, andits implementatiordirectly
followsthedescriptiongivenin Section3.3. We have equippedhealgorithmwith amechanisnior earlystoppingso
thatthe bestpathfound prior to terminationcanberecordedandreturned put we have not hadoccasiorto useearly
stoppingin the experimentseportedon here.lt is mentionedbecausehis capabilitycanbeimportantin practice.

Figures4-7 characterizehe performanceof the variousalgorithmsasa function of noiselevel on the first 50
lines of thetestdata,with the exceptionthatfor ICP ato = 100, only thefirst 32 linesareused.Figure4 presents
error rates, calculatedas the minimum averagepercharactemumberof substitutions,insertions,and deletions,
eachweightedequally that mustbe performedto transformthe recognizedext into the original. The errorrate
performancef ICP standsout; it is consistentlyandsignificantlybetterthanthe others.

Thecorrespondingpace-complgty of eachalgorithmasa functionof noiselevelis illustratedin Figure5. The
extremelylow compl«ity of Stack-1.0makesit attractive in very low-noisesituations,while highernoiselevels
arelikely to requirean adaptve tilt-slope selectionprocedureo achiere good performancewith low compleity.
Note thatthe ICP algorithmgrows the trellis very little beyond whatis alreadyrequiredfor Viterbi; the excessis
noticeableonly at the highestnoiselevels. The time-compleity of ICP versusViterbi is harderto gauge. ICP
requiresevaluatingat least N completepathsversusonly onefor Viterbi. This numbergrows with noiselevel as
shawvn in Figure6, graduallyfor typical noiselevelsandmorequickly asthe level of corruptionbecomesxtreme.
However, theadditionalpathevaluationsrequiredby ICP reusethelikelihoodcomponenbf the edgescoreswhich
can be memoized. On the other hand, the languagemodel componentf the scoresneedto be computedfor
eachpass,andthe costof doing so dependsn the detailsof the languaganodel. A carefulanalysisof ICP time-
compl«ity would involve the detailsof how the languaganodelis evaluated particularlythe boundfunctions;for



Average per-character edit distance

Figure 4. Errorratesfor thevariousalgorithms measuredh editdistancenormalizedby thelengthof thetext, using
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now we simply obsere thatthetime-compleity of eachadditionalscoringpassn ICP is variable.

For boththeViterbi andStackalgorithms time-compleity is directly proportionako space-compldty. Relatve
to the Viterbi algorithm,the Stackalgorithmsavesafactorof |.A| pernodein time-compleity if we assumehe cost
of scoringan edgeis the samein both casespecausén Stackthe outgoingedgesare scoredonly whena nodeis
takenoff the priority queueandexpandedo |.A| new nodes.In practice thecostof scoringanedgeis slightly higher
in Stackthanin Viterbi becausef the presencef alanguagenodel,anda detailedanalysisof time-compleity (not

attemptecdhere)would have to take this differenceinto account.

Space complexity in average number of nodes per pixel column

Figure 5. space-complaty asafunctionof noiselevel for the variousalgorithms.
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Effect of Noise Level on ICP Time Complexity
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Figure 6. Numberof ICP iterationsrequiredasa functionof noiselevel.

Finally, Figure 7 characterizeshe performanceof the algorithmsin termsof whatthey areactuallytrying to
optimize:the averagepathscore(shavn relative to the scoreof groundtruth, andnormalizedby pathlength). Note
thatICP scoresslightly betterthangroundtruth atthe highestnoiselevel. Thisis becausat suchahigh noiselevel,
ground-truthceasego be a highest-scorgath. Had a suficiently steeptilt function beenusedwith Stack, it too
would have founda highest-scor@ath.

Effect of Noise Level on Path Score
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Figure 7. Averageedgescoresalongpathsfoundby thealgorithmsdiscussedh thetext, relative to theaverageedge
scoredor groundtruth.



5. CONCLUSION

We have discussedhe problemof integratingsoft linguistic constraintsdirectly into the best-pattsearchprocedure
in DocumentimageDecoding,andhave identifiedand comparedwo algorithmsfor this purpose.Thefirst is the
ICP algorithm, a bound-basedterative techniquethat is guaranteedo yield a truly bestpath but which canbe
computationallyexpensve in situationswherethe documenimagehasbeenseverely corrupted.The seconds the
Stackalgorithm, an estimation-basetechniquewhich is computationallyattractie but which doesnot guarantee
thata pathwith the highestscorewill be found. An additionaldifferenceis thatthe Stackalgorithmrequiresthat
a tilt function be specified,and the functioning of Stackdependscritically on it. The basiclCP algorithm has
no parameterasidefrom the languagemodelitself, but it doesrequirethat the languagemodel be amenableto
computingboundingfunctionsof a particularform. We have alsoobseredthatthe ICP algorithmcanbeemplo/ed
asanapproximatealgorithmvia early stopping thoughwe have not exploredthataspecin detail. The experimental
resultspresentedvere basedon a simplified simulation of DID which useda restrictedalphabetand in which
no provision was madefor fine variablespacingbetweencharacteitemplates.Remwing thesesimplificationsto
improve realismin furthersimulationss the subjectof ongoingwork.
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